1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
#pragma comment(linker, "/STACK:10240000")
#include <map>
#include <set>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define X first
#define Y second
#define pb push_back
#define mp make_pair
#define all(a) (a).begin(), (a).end()
#define fillchar(a, x) memset(a, x, sizeof(a))
#define fillarray(a, b) memcpy(a, b, sizeof(a))
typedef long long ll;
typedef pair<int, int> pii;
typedef unsigned long long ull;
#ifndef ONLINE_JUDGE
namespace Debug {
void RI(vector<int>&a,int n){a.resize(n);for(int i=;i<n;i++)scanf("%d",&a[i]);}
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?:-;
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>
void print(T*p, T*q){int d=p<q?:-;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}
}
#endif // ONLINE_JUDGE
template<typename T>bool umax(T&a, const T&b){return b<=a?false:(a=b,true);}
template<typename T>bool umin(T&a, const T&b){return b>=a?false:(a=b,true);}
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const double EPS = 1e-14;
/* -------------------------------------------------------------------------------- */
const int maxn = 2e2 + ;
struct Dinic {
private:
//const static int maxn = 1e3 + 7;
struct Edge {
int from, to, cap, least;
Edge(int u, int v, int w, int l): from(u), to(v), cap(w), least(l) {}
};
int s, t;
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn], cur[maxn];
bool bfs() {
memset(vis, , sizeof(vis));
queue<int> Q;
Q.push(s);
d[s] = ;
vis[s] = true;
while (!Q.empty()) {
int x = Q.front(); Q.pop();
for (int i = ; i < G[x].size(); i ++) {
Edge &e = edges[G[x][i]];
if (!vis[e.to] && e.cap) {
vis[e.to] = true;
d[e.to] = d[x] + ;
Q.push(e.to);
}
}
}
return vis[t];
}
int dfs(int x, int a) {
if (x == t || a == ) return a;
int flow = , f;
for (int &i = cur[x]; i < G[x].size(); i ++) {
Edge &e = edges[G[x][i]];
if (d[x] + == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > ) {
e.cap -= f;
edges[G[x][i] ^ ].cap += f;
flow += f;
a -= f;
if (a == ) break;
}
}
return flow;
}
public:
void clear() {
for (int i = ; i < maxn; i ++) G[i].clear();
edges.clear();
memset(d, , sizeof(d));
}
void add(int from, int to, int cap, int least) {
edges.push_back(Edge(from, to, cap, least));
edges.push_back(Edge(to, from, , least));
int m = edges.size();
G[from].push_back(m - );
G[to].push_back(m - );
}
int solve(int s, int t) {
this->s = s; this->t = t;
int flow = ;
while (bfs()) {
memset(cur, , sizeof(cur));
flow += dfs(s, 1e9);
}
return flow;
}
void out(int m) {
for (int i = ; i < m; i ++) {
printf("%d\n", edges[i << ].least + edges[i << | ].cap);
}
}
};
Dinic solver;
int tob[maxn], fromb[maxn];
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif // ONLINE_JUDGE
int n, m;
while (cin >> n >> m) {
solver.clear();
fillchar(tob, );
fillchar(fromb, );
for (int i = ; i < m; i ++) {
int u, v, b, c;
scanf("%d%d%d%d", &u, &v, &b, &c);
solver.add(u, v, c - b, b);
tob[v] += b;
fromb[u] += b;
}
int total = ;
for (int i = ; i <= n; i ++) {
int dif = tob[i] - fromb[i];
if (dif > ) solver.add(, i, dif, );
if (dif < ) solver.add(i, n + , - dif, );
total += abs(dif);
}
if (solver.solve(, n + ) != total / ) puts("NO");
else {
puts("YES");
solver.out(m);
}
}
return ;
}
|