bzoj 3144: [Hnoi2013]切糕 最小割

3144: [Hnoi2013]切糕

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 681  Solved: 375
[Submit][Status]

Description

bzoj 3144: [Hnoi2013]切糕 最小割

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

  一类经典的方案选择型最小割,感觉,非常神奇,不过这个是稠密图把我以前的dinic直接卡TLE了,发现一定要判断maxf==0时直接退出。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 50
#define MAXH 50
#define MAXE MAXV*10
#define MAXV MAXN*MAXN*MAXH
#define INF 0x3f3f3f3f
const int mov[][]={{,},{,},{-,},{,-}};
struct Edge
{
int np,val;
Edge *next,*neg;
}E[MAXE],*V[MAXV];
int sour,sink=;
int tope=-;
void addedge(int x,int y,int z)
{
// printf("Add:%d %d %d\n",x,y,z);
E[++tope].np=y;
E[tope].val=z;
E[tope].next=V[x];
V[x]=&E[tope]; E[++tope].np=x;
E[tope].val=;
E[tope].next=V[y];
V[y]=&E[tope]; V[x]->neg=V[y];
V[y]->neg=V[x];
}
int q[MAXV];
int vis[MAXV],bfstime=;
int lev[MAXV];
int bfs()
{
int head=-,tail=;
Edge *ne;
int now;
q[]=sour;
vis[sour]=++bfstime;
while (head<tail)
{
now=q[++head];
for (ne=V[now];ne;ne=ne->next)
{
if (!ne->val || vis[ne->np]==bfstime)continue;
vis[ne->np]=bfstime;
q[++tail]=ne->np;
lev[ne->np]=lev[now]+;
}
}
return vis[sink]==bfstime;
}
int dfs(int now,int maxf)
{
int t,ret=;
if (now==sink)return maxf;
Edge *ne;
for (ne=V[now];maxf && ne;ne=ne->next)
{
if (!ne->val || lev[ne->np]!=lev[now]+)continue;
t=dfs(ne->np,min(maxf,ne->val));
ne->val-=t;
ne->neg->val+=t;
maxf-=t;
ret+=t;
}
if (maxf)lev[now]=-;
return ret;
}
int dinic()
{
int ret=;
while (bfs())
{
ret+=dfs(sour,INF);
}
return ret;
}
int n,m,h;
int gid(int x,int y,int z)
{
return +x*m+y+z*m*n;
}
int a[MAXN][MAXN][MAXH];
int main()
{
freopen("input.txt","r",stdin);
int i,j,k,k2,x,y,z;
scanf("%d%d%d",&n,&m,&h);
int d;
scanf("%d",&d);
for (k=;k<=h;k++)
for (i=;i<=n;i++)
for (j=;j<=m;j++)
{
scanf("%d",&a[i][j][k]);
addedge(gid(i,j,k-),gid(i,j,k),a[i][j][k]);
}
for (i=;i<=n;i++)
for (j=;j<=m;j++)
for (k=;k+d<=h;k++)
for (k2=;k2<;k2++)
if (i+mov[k2][]> && i+mov[k2][]<=n && j+mov[k2][]> && j+mov[k2][]<=m)
{
// addedge(gid(i,j,k),gid(i+mov[k2][0],j+mov[k2][1],k+d),INF);
addedge(gid(i,j,k+d),gid(i+mov[k2][],j+mov[k2][],k),INF);
}
for (i=;i<=n;i++)
for (j=;j<=m;j++)
{
addedge(sour,gid(i,j,),INF);
addedge(gid(i,j,h),sink,INF);
}
printf("%d\n",dinic());
}
上一篇:FreeSql 新功能介绍:贪婪加载五种方法


下一篇:微软 Build 2016年开发者大会发布多项功能升级