1066. Root of AVL Tree

An AVL tree is a self-balancing binary search tree.  In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.  Figures 1-4 illustrate the rotation rules.

   

    1066. Root of AVL Tree    1066. Root of AVL Tree

 

 

1066. Root of AVL Tree    1066. Root of AVL Tree

Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

 

Input Specification:

Each input file contains one test case.  For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted.  Then N distinct integer keys are given in the next line.  All the numbers in a line are separated by a space.

Output Specification:

For each test case, print ythe root of the resulting AVL tree in one line.

Sample Input 1:

5
88 70 61 96 120

Sample Output 1:

70

Sample Input 2:

7
88 70 61 96 120 90 65

Sample Output 2:

88


=====================================================
简单的平衡树创建,值得注意的地方是 在插入的时候 为了保证树的平衡而进行的旋转

---------------src--------------------


1066. Root of AVL Tree
#include <cstdio>
#include <stdlib.h>

#define max(a,b) ((a>b)?(a):(b))
typedef struct AvlNode 
{
    int data ;    
    struct AvlNode *left ;
    struct AvlNode *right ;
    int height ;
        
}AvlNode  ;

int height ( AvlNode *t )  
{
    return t == NULL ? -1 : t->height;
}

void LLRotate ( AvlNode *& t ) //左左 对应的情况是 旋转节点的左孩子 代替传入节点,即 传入节点的左子树上面 有新增节点 为了保持平衡 需要向右单旋转
{ AvlNode
*tmp = t->left ; t->left = tmp->right ; tmp->right = t ; tmp->height = max(height(tmp->left) , height(tmp->right) )+1; t->height = max (height(t->left) , height(t->right )) +1 ; t = tmp ; } void RRRotate ( AvlNode *& t )//右右 对应的情况是 传入节点的右孩子 在旋转之后 代替传入节点, 即 传入节点的右子树上面有新增节点 需要 向左单旋转
{ AvlNode
*tmp = t->right ; t->right = tmp->left ; tmp->left = t ; tmp->height = max ( height ( tmp->left) , height ( tmp->right ) ) +1 ; t->height = max ( height(t->left) , height(t->right ) )+1 ; t = tmp ; } void RLRotate ( AvlNode *& t )// 对应 传入节点的 右孩子的 左子树 有新增节点,先将 右孩子向右单向旋转,使右孩子的左右子树平衡,然后 向左单向旋转 传入节点 是传入节点的左右子树达到平衡
{ LLRotate( t
->right) ; RRRotate( t ) ; } void LRRotate ( AvlNode *& t )//对应传入节点 的左孩子的 右子树上面 有新增节点, 先将 左孩子 向左 单向旋转,是的左孩子的左右子树平衡,
                  //然后 向右单方向旋转 传入节点 使得 传入节点 的左右子树达到平衡
{ RRRotate( t
->left) ; LLRotate( t ) ; } //由于 生成AVL 树的时候 , 需要动态生成, 所以 保证 传入的指针参数所指向的实体 在 函数中的变化是 被记录的,所以 需要使用引用符号 ‘&’ void insert ( const int &x , AvlNode *&t ) { if ( t == NULL ) { t = (AvlNode*)malloc(sizeof(AvlNode)) ; t->data = x ; t->height = 0 ; t->left = t->right = NULL ; } else if ( x < t->data ) { insert ( x , t->left ) ; if ( height( t->left ) - height( t->right ) == 2 ) if ( x < t->left->data ) LLRotate( t ) ; else LRRotate( t ) ; } else if ( t->data < x ) { insert ( x , t->right ) ; if ( height( t->right ) - height ( t->left) == 2 ) if ( x > t->right->data ) RRRotate( t ) ; else RLRotate( t ) ; } else ; t->height = max( height ( t->left ) , height(t->right)) +1 ; } int main ( void ) { AvlNode *root = NULL ; int N ; int i ; int num[22] ; scanf("%d", &N) ; for ( i = 0 ; i < N ; i++ ) { scanf("%d", &(num[i] )) ; } for ( i = 0 ; i < N ; i++ ) { insert( num[i] , root ) ; } printf("%d" , root->data) ; return 0 ; }
1066. Root of AVL Tree

 



1066. Root of AVL Tree

上一篇:【原创】本科生活


下一篇:泰国行记五:曼谷购物,大皇宫