【PAT1006】 Sign In and Sign Out
考察点在于qsort函数cmp的写法。
#include<stdio.h> #include<stdlib.h> char name[16][100]; struct stu { char name[16]; int h1,m1,s1; int h2,m2,s2; }a[100]; int cmp1(const void* a,const void* b) { struct stu* c = (struct stu*)a; struct stu* d = (struct stu*)b; if((*c).h1 == (*d).h1) { if((*c).m1 == (*d).m1) { return (*c).s1 - (*d).s1; } else { return (*c).m1 - (*d).m1; } } else { return (*c).h1 - (*d).h1; } } int cmp2(const void* a,const void* b) { struct stu* c = (struct stu*)b; struct stu* d = (struct stu*)a; if((*c).h2 == (*d).h2) { if((*c).m2 == (*d).m2) { return (*c).s2 - (*d).s2; } else { return (*c).m2 - (*d).m2; } } else { return (*c).h2 - (*d).h2; } } int main() { int n; scanf("%d",&n); if(n==0) return 0; int i; for(i=0;i<n;i++) { scanf("%s",a[i].name); scanf("%d:%d:%d",&a[i].h1,&a[i].m1,&a[i].s1); scanf("%d:%d:%d",&a[i].h2,&a[i].m2,&a[i].s2); } qsort(a,n,sizeof(struct stu),cmp1); printf("%s ",a[0].name); qsort(a,n,sizeof(struct stu),cmp2); printf("%s",a[0].name); }
【PAT A1007】Maximum Subsequence Sum
开辟额外数组空间,存储first和last
#include<stdio.h> int a[10005]; int dp[10005]; int first[10005]; int last[10005]; int main() { int n; scanf("%d",&n); int i; for(i=0;i<n;i++) { scanf("%d",&a[i]); } dp[0] = a[0]; first[0] = 0; last[0] = 0; for(i=1;i<n;i++) { if(dp[i-1]+a[i] > a[i]) { dp[i] = dp[i-1]+a[i]; first[i] = first[i-1]; last[i] = i; } else { dp[i] = a[i]; first[i] = i; last[i] = i; } } int max = dp[0]; int k=0; for(i=1;i<n;i++) { if(dp[i]>max) { k=i; max = dp[i]; } } if(max<0) printf("0 %d %d\n",a[0],a[n-1]); else printf("%d %d %d\n",max,a[first[k]],a[last[k]]); }
【PAT A1008】 Elevator
#include<stdio.h> int main() { int n; int ans = 0; int now = 0; scanf("%d",&n); int i; for(i=0;i<n;i++) { int des; scanf("%d",&des); if(des-now>0) { ans += ((des-now)*6); } else { ans += ((now-des)*4); } now = des; ans += 5; } printf("%d",ans); }
【PAT A1009】 Product of Polynomials
要注意数组c的大小大于2000
#include<stdio.h> double a[1005] = {0.0}; double b[1005] = {0.0}; double c[3000] = {0.0}; int main() { int k1,k2; scanf("%d",&k1); int i; for(i=0;i<k1;i++) { int zhi; scanf("%d",&zhi); scanf("%lf",&a[zhi]); } scanf("%d",&k2); for(i=0;i<k2;i++) { int zhi; scanf("%d",&zhi); scanf("%lf",&b[zhi]); } for(i=0;i<1005;i++) { if(a[i]!=0) { int j; for(j=0;j<1005;j++) { if(b[j]!=0) { c[i+j] += a[i]*b[j]; } } } } int ccount=0; for(i=0;i<3000;i++) { if(c[i]!=0) ccount++; } printf("%d",ccount); for(i=2999;i>=0;i--) { if(c[i]!=0) { printf(" %d %.1lf",i,c[i]); } } }
【PAT A1010】 Radix
看了答案才知道,本题radix的范围是2~int_max(?),本来以为由于字母和数字限制,表示的范围是2~35。
另外一个坑是,由于范围过大,要使用二分法。
最坑的一个坑是,由于radix太大,longlong也可能会溢出。需要判断,如果结果为负数,那么说明已经溢出。
#include<iostream> #include<cstdio> #include<string> #include<algorithm> #include<queue> #include<vector> #include<unordered_map> #include<cmath> using namespace std; int main() { string n1, n2; int tag, radix; cin >> n1 >> n2 >> tag >> radix; long long a = 0, b = 0,res; if (tag == 2) swap(n1, n2); char ch; int index = 0; while (!n1.empty()) { ch = n1.back(); if (ch >= 'a' && ch <= 'z') { a += (ch - 'a' + 10) * pow(radix, index); } else { a += (ch - '0') * pow(radix, index); } n1.pop_back(); index++; } long long temp = 0; for (int i = 0; i < n2.length(); i++) { if (n2[i] > temp) temp = n2[i]; } if (temp >= 97) temp -= 87; else temp -= 48; long long left = temp + 1; long long right = a + 1; res = a + 2; while(left <= right) { temp = (left + right) / 2; index = 0; b = 0; string tempn2 = n2; while (!tempn2.empty()) { ch = tempn2.back(); if (ch >= 'a' && ch <= 'z') { b += (ch - 'a' + 10) * pow(temp, index); } else { b += (ch - '0') * pow(temp, index); } tempn2.pop_back(); index++; if (b > a || b < 0) break; } if (a == b) { res = min(res, temp); right--; } else if (b > a || b < 0) { right = temp - 1; } else if (b < a) { left = temp + 1; } } if (res == a + 2) cout << "Impossible" << endl; else cout << res << endl; return 0; }
【PAT A1011】 World Cup Betting
输出double类型,使用%f
#include<stdio.h> char s[3] = {'W','T','L'}; double t[3] = {0}; int ti[3] = {0}; int main() { int i; int n=3; for(i=0;i<n;i++) { int j; for(j=0;j<n;j++) { double temp; scanf("%lf",&temp); if(temp>t[i]) { t[i] = temp; ti[i] = j; } } } for(i=0;i<n;i++) { printf("%c ",s[ti[i]]); } double ans =( t[0]*t[1]*t[2]*0.65-1)*2; printf("%.2f",ans); }