双口RAM

双口RAM

主要知识点:存储器IP核的使用

调用IP核的方式:

打开quartus,新建工程和项目后,点击Tools——MegaWzard Plug In Manager——Next——点击左侧的Memory Compiler——RAM:2-port(指的是双口RAM)——选择…定位在IP文件夹下(这里的IP文件夹是自己建立的)——文件名为dpramRAM——Next——此时即打开了配置界面【左上角出现了一个图,其中图里面的data[7:0]是指8位写入数据,wraddress是指写入地址,wren指的是写请求(高电平有效),当有效时即可将写入的数据写到相应的地址上去,另外raddress指的是读端口,q指的是输出】——配置参数的调整【1.一读一写端口 2.采用字节为单位——Next——需要多少个8位字节(这里可以改256),同时端口不同的话可以使用不同的数据位宽——1.Auto:自动 2.M9K:内部块RAM 3.LCS:内部寄存器——Next——时钟(单时钟:指的是是读写采用同一个时钟,双时钟:指的是读写不用同一个时钟,还有一个双时钟:是指输入输出不用同一个时钟)——Next——Next——Next(这里会有一个I don’t care的选项被选中,因为一般不会边读边写)——Next——Next——Finish】


IP核调用完之后,此时可以点击quartus界面左侧中的files,需要将.v文件加入即可(快捷方式:ctrl+o,双击.v文件打开即可),打开的文件中会出现很多的注释,这里不要删除。
将qip文件设置为顶层文件。
将打开文件中的端口进行复制,进行下一步testbench的编写。


双口RAM

这里为调用的IP核部分

// megafunction wizard: %RAM: 2-PORT%
// GENERATION: STANDARD
// VERSION: WM1.0
// MODULE: altsyncram 

// ============================================================
// File Name: dpram.v
// Megafunction Name(s):
// 			altsyncram
//
// Simulation Library Files(s):
// 			altera_mf
// ============================================================
// ************************************************************
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
//
// 13.0.1 Build 232 06/12/2013 SP 1 SJ Full Version
// ************************************************************


//Copyright (C) 1991-2013 Altera Corporation
//Your use of Altera Corporation's design tools, logic functions 
//and other software and tools, and its AMPP partner logic 
//functions, and any output files from any of the foregoing 
//(including device programming or simulation files), and any 
//associated documentation or information are expressly subject 
//to the terms and conditions of the Altera Program License 
//Subscription Agreement, Altera MegaCore Function License 
//Agreement, or other applicable license agreement, including, 
//without limitation, that your use is for the sole purpose of 
//programming logic devices manufactured by Altera and sold by 
//Altera or its authorized distributors.  Please refer to the 
//applicable agreement for further details.


// synopsys translate_off
`timescale 1 ps / 1 ps
// synopsys translate_on
module dpram (
	clock,
	data,
	rdaddress,
	wraddress,
	wren,
	q);

	input	  clock;
	input	[7:0]  data;
	input	[7:0]  rdaddress;
	input	[7:0]  wraddress;
	input	  wren;
	output	[7:0]  q;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_off
`endif
	tri1	  clock;
	tri0	  wren;
`ifndef ALTERA_RESERVED_QIS
// synopsys translate_on
`endif

	wire [7:0] sub_wire0;
	wire [7:0] q = sub_wire0[7:0];

	altsyncram	altsyncram_component (
				.address_a (wraddress),
				.clock0 (clock),
				.data_a (data),
				.wren_a (wren),
				.address_b (rdaddress),
				.q_b (sub_wire0),
				.aclr0 (1'b0),
				.aclr1 (1'b0),
				.addressstall_a (1'b0),
				.addressstall_b (1'b0),
				.byteena_a (1'b1),
				.byteena_b (1'b1),
				.clock1 (1'b1),
				.clocken0 (1'b1),
				.clocken1 (1'b1),
				.clocken2 (1'b1),
				.clocken3 (1'b1),
				.data_b ({8{1'b1}}),
				.eccstatus (),
				.q_a (),
				.rden_a (1'b1),
				.rden_b (1'b1),
				.wren_b (1'b0));
	defparam
		altsyncram_component.address_aclr_b = "NONE",
		altsyncram_component.address_reg_b = "CLOCK0",
		altsyncram_component.clock_enable_input_a = "BYPASS",
		altsyncram_component.clock_enable_input_b = "BYPASS",
		altsyncram_component.clock_enable_output_b = "BYPASS",
		altsyncram_component.intended_device_family = "Cyclone IV E",
		altsyncram_component.lpm_type = "altsyncram",
		altsyncram_component.numwords_a = 256,
		altsyncram_component.numwords_b = 256,
		altsyncram_component.operation_mode = "DUAL_PORT",
		altsyncram_component.outdata_aclr_b = "NONE",
		altsyncram_component.outdata_reg_b = "CLOCK0",
		altsyncram_component.power_up_uninitialized = "FALSE",
		altsyncram_component.read_during_write_mode_mixed_ports = "DONT_CARE",
		altsyncram_component.widthad_a = 8,
		altsyncram_component.widthad_b = 8,
		altsyncram_component.width_a = 8,
		altsyncram_component.width_b = 8,
		altsyncram_component.width_byteena_a = 1;


endmodule

// ============================================================
// CNX file retrieval info
// ============================================================
// Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"
// Retrieval info: PRIVATE: ADDRESSSTALL_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTEENA_ACLR_A NUMERIC "0"
// Retrieval info: PRIVATE: BYTEENA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_ENABLE_A NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_ENABLE_B NUMERIC "0"
// Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"
// Retrieval info: PRIVATE: BlankMemory NUMERIC "1"
// Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_B NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
// Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_B NUMERIC "0"
// Retrieval info: PRIVATE: CLRdata NUMERIC "0"
// Retrieval info: PRIVATE: CLRq NUMERIC "0"
// Retrieval info: PRIVATE: CLRrdaddress NUMERIC "0"
// Retrieval info: PRIVATE: CLRrren NUMERIC "0"
// Retrieval info: PRIVATE: CLRwraddress NUMERIC "0"
// Retrieval info: PRIVATE: CLRwren NUMERIC "0"
// Retrieval info: PRIVATE: Clock NUMERIC "0"
// Retrieval info: PRIVATE: Clock_A NUMERIC "0"
// Retrieval info: PRIVATE: Clock_B NUMERIC "0"
// Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"
// Retrieval info: PRIVATE: INDATA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: INDATA_REG_B NUMERIC "0"
// Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_B"
// Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
// Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
// Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"
// Retrieval info: PRIVATE: JTAG_ID STRING "NONE"
// Retrieval info: PRIVATE: MAXIMUM_DEPTH NUMERIC "0"
// Retrieval info: PRIVATE: MEMSIZE NUMERIC "2048"
// Retrieval info: PRIVATE: MEM_IN_BITS NUMERIC "0"
// Retrieval info: PRIVATE: MIFfilename STRING ""
// Retrieval info: PRIVATE: OPERATION_MODE NUMERIC "2"
// Retrieval info: PRIVATE: OUTDATA_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: OUTDATA_REG_B NUMERIC "1"
// Retrieval info: PRIVATE: RAM_BLOCK_TYPE NUMERIC "0"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_MIXED_PORTS NUMERIC "2"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_A NUMERIC "3"
// Retrieval info: PRIVATE: READ_DURING_WRITE_MODE_PORT_B NUMERIC "3"
// Retrieval info: PRIVATE: REGdata NUMERIC "1"
// Retrieval info: PRIVATE: REGq NUMERIC "1"
// Retrieval info: PRIVATE: REGrdaddress NUMERIC "1"
// Retrieval info: PRIVATE: REGrren NUMERIC "1"
// Retrieval info: PRIVATE: REGwraddress NUMERIC "1"
// Retrieval info: PRIVATE: REGwren NUMERIC "1"
// Retrieval info: PRIVATE: SYNTH_WRAPPER_GEN_POSTFIX STRING "0"
// Retrieval info: PRIVATE: USE_DIFF_CLKEN NUMERIC "0"
// Retrieval info: PRIVATE: UseDPRAM NUMERIC "1"
// Retrieval info: PRIVATE: VarWidth NUMERIC "0"
// Retrieval info: PRIVATE: WIDTH_READ_A NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_READ_B NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_WRITE_A NUMERIC "8"
// Retrieval info: PRIVATE: WIDTH_WRITE_B NUMERIC "8"
// Retrieval info: PRIVATE: WRADDR_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: WRADDR_REG_B NUMERIC "0"
// Retrieval info: PRIVATE: WRCTRL_ACLR_B NUMERIC "0"
// Retrieval info: PRIVATE: enable NUMERIC "0"
// Retrieval info: PRIVATE: rden NUMERIC "0"
// Retrieval info: LIBRARY: altera_mf altera_mf.altera_mf_components.all
// Retrieval info: CONSTANT: ADDRESS_ACLR_B STRING "NONE"
// Retrieval info: CONSTANT: ADDRESS_REG_B STRING "CLOCK0"
// Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_A STRING "BYPASS"
// Retrieval info: CONSTANT: CLOCK_ENABLE_INPUT_B STRING "BYPASS"
// Retrieval info: CONSTANT: CLOCK_ENABLE_OUTPUT_B STRING "BYPASS"
// Retrieval info: CONSTANT: INTENDED_DEVICE_FAMILY STRING "Cyclone IV E"
// Retrieval info: CONSTANT: LPM_TYPE STRING "altsyncram"
// Retrieval info: CONSTANT: NUMWORDS_A NUMERIC "256"
// Retrieval info: CONSTANT: NUMWORDS_B NUMERIC "256"
// Retrieval info: CONSTANT: OPERATION_MODE STRING "DUAL_PORT"
// Retrieval info: CONSTANT: OUTDATA_ACLR_B STRING "NONE"
// Retrieval info: CONSTANT: OUTDATA_REG_B STRING "CLOCK0"
// Retrieval info: CONSTANT: POWER_UP_UNINITIALIZED STRING "FALSE"
// Retrieval info: CONSTANT: READ_DURING_WRITE_MODE_MIXED_PORTS STRING "DONT_CARE"
// Retrieval info: CONSTANT: WIDTHAD_A NUMERIC "8"
// Retrieval info: CONSTANT: WIDTHAD_B NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_A NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_B NUMERIC "8"
// Retrieval info: CONSTANT: WIDTH_BYTEENA_A NUMERIC "1"
// Retrieval info: USED_PORT: clock 0 0 0 0 INPUT VCC "clock"
// Retrieval info: USED_PORT: data 0 0 8 0 INPUT NODEFVAL "data[7..0]"
// Retrieval info: USED_PORT: q 0 0 8 0 OUTPUT NODEFVAL "q[7..0]"
// Retrieval info: USED_PORT: rdaddress 0 0 8 0 INPUT NODEFVAL "rdaddress[7..0]"
// Retrieval info: USED_PORT: wraddress 0 0 8 0 INPUT NODEFVAL "wraddress[7..0]"
// Retrieval info: USED_PORT: wren 0 0 0 0 INPUT GND "wren"
// Retrieval info: CONNECT: @address_a 0 0 8 0 wraddress 0 0 8 0
// Retrieval info: CONNECT: @address_b 0 0 8 0 rdaddress 0 0 8 0
// Retrieval info: CONNECT: @clock0 0 0 0 0 clock 0 0 0 0
// Retrieval info: CONNECT: @data_a 0 0 8 0 data 0 0 8 0
// Retrieval info: CONNECT: @wren_a 0 0 0 0 wren 0 0 0 0
// Retrieval info: CONNECT: q 0 0 8 0 @q_b 0 0 8 0
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.v TRUE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.inc FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.cmp FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram.bsf FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram_inst.v FALSE
// Retrieval info: GEN_FILE: TYPE_NORMAL dpram_bb.v TRUE
// Retrieval info: LIB_FILE: altera_mf

testbench编写

	`timescale 1ns/1ns
	`define clk_period 20

 	 module dpram_tb;
	
	  reg clock;
	  reg [7:0]data;
	  reg [7:0]rdaddress;
	  reg [7:0]wraddress;
	  reg wren;
	  
	  wire [7:0] q;
	  
	  integer i;
	
	
	  dpram dpram0 (
			.clock(clock),
			.data(data),
			.rdaddress(rdaddress),
			.wraddress(wraddress),
			.wren(wren),
			.q(q)
		);
		//产生时钟激励
		initial  clock=1;
		always# (`clk_period/2)  clock = ~clock;
	
		initial begin
	
			data = 0;
			rdaddress = 0;
			wraddress = 0;
			wren = 0;
			#(`clk_period*20+1); //+1是为了让让时钟不与系统时钟严格对应,便于分析观察	
			
	//写操作的进行
	      for(i=0;i<= 15;i=i+1)begin
				wren = 1;
				data = 255-i;
				wraddress = i;
			  #`clk_period;
			end
	     	
	//读操作的进行	
		wren = 0;
		#(`clk_period*20);
		for(i=0;i<=15;i=i+1)begin
		     rdaddress = i;
			  #`clk_period;
		end
		#(`clk_period*20);
		$stop;
		
		end

	endmodule 

预览全局的前仿真图
双口RAM
当wren为高电平时有效,此时进行写操作
双口RAM
延迟20个系统时钟周期后进行读操作
双口RAM

上一篇:R语言人口期望寿命统计预测方法


下一篇:postgreSQL学习笔记 (函数)