设 $a_0$, $d$ 给定, $a_k=a_0+kd$, $k=0,1,\cdots,n$. 试求如下 $n+1$ 阶行列式的值: $$\bex \sev{\ba{ccccc} a_0&a_1&a_2&\cdots&a_n\\ a_1&a_0&a_1&\cdots&a_{n-1}\\ a_2&a_1&a_0&\cdots&a_{n-2}\\ \cdots&\cdots&\cdots&\cdots&\cdots\\ a_n&a_{n-1}&a_{n-2}&\cdots&a_0 \ea} \eex$$
相关文章
- 12-18[Everyday Mathematics]20150226
- 12-18论文阅读:Making Virtual Pancakes — Acquiring and Analyzing Data of Everyday Manipulation Tasks through I
- 12-18CBOW原理 运用CBOW模型,给出一个语句”i drink milk everyday“, 预测 ”milk“。假设第一次随机化初始矩阵和第二次随机化初始矩阵分别为:
- 12-18Mathematics during the Scientific Revolution(18th century)
- 12-18Mathematics求解多元符号变量方程组
- 12-18everyday
- 12-18[Everyday Mathematics]20150125
- 12-18[Everyday Mathematics]20150131
- 12-18advanced mathematics 3
- 12-18[Everyday Mathematics]20150129