4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 14475 | Accepted: 4138 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Source
折半枚举,然后二分。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; const int MAX = ; typedef long long ll; int N;
int a[][MAX];
int cd[MAX * MAX]; void solve() {
ll res = ; for(int i = ; i <= N; ++i) {
for(int j = ; j <= N; ++j) {
cd[(i - ) * N + j] = a[][i] + a[][j];
}
}
sort(cd + ,cd + N * N + ); for(int i = ; i <= N; ++i) {
for(int j = ; j <= N; ++j) {
int x = -(a[][i] + a[][j]);
res += upper_bound(cd + ,cd + N * N + ,x) -
lower_bound(cd + ,cd + N * N + ,x); }
} printf("%I64d\n",res); } int main()
{
// freopen("sw.in","r",stdin);
scanf("%d",&N);
for(int i = ; i <= N; ++i) {
for(int j = ; j <= ; ++j) {
scanf("%d",&a[j][i]);
}
} solve(); return ;
}