hackerrank Similar Pair

传送门

Problem Statement

You are given a tree where each node is labeled from 1 to n. How many similar pairs(S) are there in this tree?

A pair (A,B) is a similar pair if the following are true:

  • node A is the ancestor of node B
  • abs(A−B)≤T

Input format: 
The first line of the input contains two integers, n and T. This is followed by n−1 lines, each containing two integers si and ei where node si is a parent to node ei.

Output format: 
Output a single integer which denotes the number of similar pairs in the tree.

Constraints: 
1≤n≤100000 
0≤T≤n 
1≤si, ei ≤n

Sample Input:

5 2
3 2
3 1
1 4
1 5

Sample Output:

4

Explanation: 
The similar pairs are: (3, 2) (3, 1) (3, 4) (3, 5).

You can have a look at the tree image here

-------------------------------------------------------------
Solution:
题目给出一棵有根树,要求统计其中满足以下条件的点对(A, B)的数目
(1) A是B的祖先(但A不能等于B,即A应是B的合法(proper)祖先)
(2)abs(A-B)<=T(即两点编号之差的绝对值应不大于T)
--------------------------------------------------------
解法不难想,类似于树形DP,DFS遍历这棵有根树,以后序(或者说后序遍历)将各个顶点的编号逐一放到集合中。在进入以顶点u为根的子树时,先查询当前集合中有多少节点v满足 abs(v-u)<=T,遍历完这棵子树后在查询一次,由于新添进集合的都是u的后代,所以两次结果相减便是符合条件的点对(u,x)的数目。对每个节点都做类似的查询结果加起来就是答案。
--------------------------------------------------------------
至此,问题归结为如何维护这个集合,显然树状数组(BIT)是最合适的
#include <bits/stdc++.h>
using namespace std;
int T, n;
const int N(1e5+);
int bit[N];
int sum(int x){
int s=;
while(x){
s+=bit[x];
x-=x&-x;
}
return s; //error-prone
}
void add(int x){
while(x<=n){
bit[x]++;
x+=x&-x;
}
}
int get_ans(int x){
int l=max(x-T-, );
int r=min(n, x+T);
return sum(r)-sum(l);
}
int par[N];
vector<int> g[N];
long long ans;
void dfs(int u){
int tmp=get_ans(u);
for(int i=; i<g[u].size(); i++){
int &v=g[u][i];
dfs(v);
}
ans+=get_ans(u)-tmp;
add(u);
}
int main(){
//freopen("in", "r", stdin);
cin>>n>>T;
for(int i=, u, v; i<n; i++){
cin>>u>>v;
par[v]=u;
g[u].push_back(v);
}
int root=;
while(par[root])
root=par[root];
dfs(root);
cout<<ans<<endl;
}

--------------------------------------------

我们在考虑能否用C++ STL中的 set实现这个集合

显然我们需要支持3种操作

1. 插入,set OK

2.查询集合中大于x的数有多少个

3.查询集合中小于x的数有多少个

下面的资料摘自C++ Primer (5th. edition)

P. 330

Table 9.2 Contianer Operations

Type Aliases

difference_type Signed integral type big enough to hold the distance between two iterators

------------------------------------------------------------------------------------------------------------
我们知道set和map都支持upper_bound(),lower_bound(),可尝试用这两个函数来实现上述后两个查询。
比如我们想查询集合s中在[L, R]范围内的数有多少个,试着写成
set<int> s;
int f(int l, int r){
return s.upper_bound(r)-s.lower_bound(l);
}

但这是行不通的,编译时报错:

:no match for ‘operator-’ (operand types are ‘std::set<int>: :iterator {aka std::_Rb_tree_const_iterator<int>}’ and ‘std::set<int>::iterator {aka std::_Rb_tree_const_iterator<int>}’)

因为set<int>::iterator不支持-(减法)

------------------------------------------------

只能写成

set<int> s;
int f(int l, int r){
auto b=s.lower_bound(l), e=s.upper_bound(r);
int res=;
while(b!=e){ //use != rather than <
++b;
++res;
}
return res;
}

但这样写复杂度是O(n),不能承受。

Bjarne Stroustrup TC++PL (4th. edition) P.954

The reason to use != rather than < for testing whether we have reached the end is partially because that is

the more precise statement of what we testing for and partially because only random-access iterators support <.

----------------------------------------------------------

 
 
 
上一篇:安卓(android)之实现断点下载功能


下一篇:fir.im weekly - 「 持续集成 」实践教程合集