srm 581

250:一个模拟题,我一眼不会做,哈哈

500:给你最多300个点的两棵树,然后tree1的每一个点分别与tree2的每一个点相连,形成一副图,求这副图中长度为K的环的个数的期望。

K <= 7其实说明了这个环是由两条来自不同树的路径构成的!

所以直接暴力求出Count[i]表示长度为i的点对数量就好了。

答案就是Sum ( Count1[i] * Count2[K - 2 - i] * 2 *(n - 2)!) / (n!)

 

#include <iostream>
#include <cstdio>
#include <string>
#include <set>
#include <map>
#include <functional>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
using namespace std ;
class TreeUnion
{
public:
double expectedCycles(vector <string> tree1, vector <string> tree2, int K) ;


};
const int N = 310;
int dis1[N][N], dis2[N][N];
void floyd(int d[][N],int n) {
  for(int k = 0; k < n; k++) {
    for(int i = 0; i < n; i++) {
      for(int j = 0; j < n; j++) {
        if(d[i][k] && d[k][j]) {
          if(!d[i][j]) d[i][j] = d[i][k] + d[k][j];
          else d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
        }
      }
    }
  }
}
int Count1[N], Count2[N];
double TreeUnion:: expectedCycles(vector <string> tree1, vector <string> tree2, int K)  {
  string t1 = "";
  for(int i = 0; i < tree1.size(); i++) t1 += tree1[i];
  string t2 = "";
  for(int i = 0; i < tree2.size(); i++) t2 += tree2[i];
  int cnt = 0;
  for(int i = 0; i < t1.length(); i++) {
    if(t1[i] >= ‘0‘ && t1[i] <= ‘9‘) {
      int num = t1[i] - ‘0‘;
      int j = i + 1;
      while(t1[j] >= ‘0‘ && t1[j] <= ‘9‘) {
        num = num * 10 + t1[j] - ‘0‘;
        j++;
      }
      dis1[cnt + 1][num] = dis1[num][cnt + 1] = 1;
      cnt ++;
      i = j;
    }
  }
  int n = cnt + 1;
  cnt = 0;
  for(int i = 0; i < t2.length(); i++) {
    if(t2[i] >= ‘0‘ && t2[i] <= ‘9‘) {
      int num = t2[i] - ‘0‘;
      int j = i + 1;
      while(t2[j] >= ‘0‘ && t2[j] <= ‘9‘) {
        num = num * 10 + t2[j] - ‘0‘;
        j++;
      }
      dis2[cnt + 1][num] = dis2[num][cnt + 1] = 1;
      cnt ++;
      i = j;
    }
  }
  floyd(dis1, n); floyd(dis2, n);
  for(int i = 0; i < n; i++) {
    for(int j = i + 1; j < n; j++) {
      Count1[dis1[i][j]] ++;
      Count2[dis2[i][j]] ++;
    }
  }
  double ret = 0;
  for(int i = 1; i < K; i++) {
    ret += 1.0 * Count1[i] * Count2[K - 2 - i] * 2;
  }
  return ret / n / (n - 1);
}


// Powered by FileEdit
// Powered by TZTester 1.01 [25-Feb-2003]
// Powered by CodeProcessor

srm 581

上一篇:CodeForces Round #227 (Div. 2)


下一篇:Oracle基础学习3--Oracle创建用户并授权