es(四)--IK分词器和ElasticSearch集成使用

IK 分词器和ElasticSearch集成使用

1.上述查询存在问题分析

在进行字符串查询时,我们发现去搜索"搜索服务器"和"钢索"都可以搜索到数据;
而在进行词条查询时,我们搜索"搜索"却没有搜索到数据;
究其原因是ElasticSearch的标准分词器导致的,当我们创建索引时,字段使用的是标准分词器:

{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"	//标准分词器
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"standard"	//标准分词器
                }
            }
        }
    }
}

--1.1例如对 "我是程序员" 进行分词

  • 标准分词器分词效果测试:
    http://127.0.0.1:9200/_analyze?analyzer=standard&pretty=true&text=我是程序员
  • 分词结果:
{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "<IDEOGRAPHIC>",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "<IDEOGRAPHIC>",
      "position" : 1
    },
    {
      "token" : "程",
      "start_offset" : 2,
      "end_offset" : 3,
      "type" : "<IDEOGRAPHIC>",
      "position" : 2
    },
    {
      "token" : "序",
      "start_offset" : 3,
      "end_offset" : 4,
      "type" : "<IDEOGRAPHIC>",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "<IDEOGRAPHIC>",
      "position" : 4
    }
  ]
}

而我们需要的分词效果是:我、是、程序、程序员
这样的话就需要对中文支持良好的分析器的支持,支持中文分词的分词器有很多,word分词器、庖丁解牛、盘古分词、Ansj分词等,但我们常用的还是下面要介绍的IK分词器

2.IK分词器简介

  • IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始,IKAnalyzer已经推出 了3个大版本。最初,它是以开源项目Lucene为应用主体的,结合词典分词和文法分析算法的中文分词组件。新版本的IKAnalyzer3.0则发展为 面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认优化实现。

  • IK分词器3.0的特性如下:
    1)采用了特有的“正向迭代最细粒度切分算法“,具有60万字/秒的高速处理能力。
    2)采用了多子处理器分析模式,支持:英文字母(IP地址、Email、URL)、数字(日期,常用中文数量词,罗马数字,科学计数法),中文词汇(姓名、地名处理)等分词处理。
    3)对中英联合支持不是很好,在这方面的处理比较麻烦.需再做一次查询,同时是支持个人词条的优化的词典存储,更小的内存占用。
    4)支持用户词典扩展定义。
    5)针对Lucene全文检索优化的查询分析器IKQueryParser;采用歧义分析算法优化查询关键字的搜索排列组合,能极大的提高Lucene检索的命中率。

3.ElasticSearch集成IK分词器

--3.1IK分词器的安装

--3.2 IK分词器测试

IK提供了两个分词算法ik_smart 和 ik_max_word
其中 ik_smart 为最少切分,ik_max_word为最细粒度划分
我们分别来试一下

----3.2.1最小切分

  • 在浏览器地址栏输入地址:
http://127.0.0.1:9200/_analyze?analyzer=ik_smart&pretty=true&text=我是程序员
  • 输出的结果为:
{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    }
  ]
}

----3.2.1最细切分:

  • 在浏览器地址栏输入地址:
http://127.0.0.1:9200/_analyze?analyzer=ik_max_word&pretty=true&text=我是程序员
  • 输出的结果为:
{
  "tokens" : [
    {
      "token" : "我",
      "start_offset" : 0,
      "end_offset" : 1,
      "type" : "CN_CHAR",
      "position" : 0
    },
    {
      "token" : "是",
      "start_offset" : 1,
      "end_offset" : 2,
      "type" : "CN_CHAR",
      "position" : 1
    },
    {
      "token" : "程序员",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "程序",
      "start_offset" : 2,
      "end_offset" : 4,
      "type" : "CN_WORD",
      "position" : 3
    },
    {
      "token" : "员",
      "start_offset" : 4,
      "end_offset" : 5,
      "type" : "CN_CHAR",
      "position" : 4
    }
  ]
}

4.修改索引映射mapping

--4.1重建索引

  • 删除原有blog1索引
DELETE		localhost:9200/blog1
  • 创建blog1索引,此时分词器使用ik_max_word
    PUT localhost:9200/blog1
{
    "mappings": {
        "article": {
            "properties": {
                "id": {
                	"type": "long",
                    "store": true,
                    "index":"not_analyzed"
                },
                "title": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"ik_max_word"
                },
                "content": {
                	"type": "text",
                    "store": true,
                    "index":"analyzed",
                    "analyzer":"ik_max_word"
                }
            }
        }
    }
}
  • 创建文档
    POST localhost:9200/blog1/article/1
{
	"id":1,
	"title":"ElasticSearch是一个基于Lucene的搜索服务器",
	"content":"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便。"
}

--4.2再次测试queryString查询

  • 请求url:
    POST localhost:9200/blog1/article/_search
  • 请求体:
    {
    "query": {
    "query_string": {
    "default_field": "title",
    "query": "搜索服务器"
    }
    }
    }
    postman截图:
    es(四)--IK分词器和ElasticSearch集成使用
  • 将请求体搜索字符串修改为"钢索",再次查询:
{
    "query": {
        "query_string": {
            "default_field": "title",
            "query": "钢索"
        }
    }
}

postman截图:
es(四)--IK分词器和ElasticSearch集成使用

--4.2再次测试term查询

  • 请求url:
    POST localhost:9200/blog1/article/_search
  • 请求体:
{
    "query": {
        "term": {
            "title": "搜索"
        }
    }
}
  • postman截图:
上一篇:Elasticsearch学习-基于Centos安装(一)


下一篇:Docker安装es、kibana、ik分词器