题目:
Design a data structure that supports the following two operations:
void addWord(word)
bool search(word)
search(word) can search a literal word or a regular expression string containing only letters a-z
or .
. A .
means it can represent any one letter.
For example:
addWord("bad")
addWord("dad")
addWord("mad")
search("pad") -> false
search("bad") -> true
search(".ad") -> true
search("b..") -> true
Note:
You may assume that all words are consist of lowercase letters a-z
.
链接: http://leetcode.com/problems/add-and-search-word-data-structure-design/
题解:
设计一个Data Structure来search和add单词。这道题我们又可以用一个R-Way Trie来完成。 像JQuery里面的Auto-complete功能其实就可以用R-Way Trie based method来设计和编程。注意当字符为"."的时候我们要loop当前节点的全部26个子节点,这里要用一个DFS。
Time Complexity - O(n), Space Complextiy - O(26n)。
public class WordDictionary {
private TrieNode root = new TrieNode(); private class TrieNode {
private final int R = 26; // radix = 26
public TrieNode[] next;
public boolean isWord; public TrieNode() {
next = new TrieNode[R];
}
} // Adds a word into the data structure.
public void addWord(String word) {
if(word == null || word.length() == 0)
return;
TrieNode node = root;
int d = 0; while(d < word.length()) {
char c = word.charAt(d);
if(node.next[c - 'a'] == null)
node.next[c - 'a'] = new TrieNode();
node = node.next[c - 'a'];
d++;
} node.isWord = true;
} // Returns if the word is in the data structure. A word could
// contain the dot character '.' to represent any one letter.
public boolean search(String word) {
if(word == null || word.length() == 0)
return false;
TrieNode node = root;
int d = 0; return search(node, word, 0);
} private boolean search(TrieNode node, String word, int d) {
if(node == null)
return false;
if(d == word.length())
return node.isWord;
char c = word.charAt(d);
if(c == '.') {
for(TrieNode child : node.next) {
if(child != null && search(child, word, d + 1))
return true;
}
return false;
} else {
return search(node.next[c - 'a'], word, d + 1);
}
}
} // Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary = new WordDictionary();
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");
二刷:
方法和一刷一样,主要使用Trie。addWord的时候还是使用和Trie的insert一样的的代码。 Search的时候因为有一个通配符'.',所以我们要用dfs搜索节点的26个子节点。
假如使用Python的话可以不用Trie,直接用dict来做。
Java:
Time Complexity: addWord - O(L) , search - O(26L), Space Complexity - O(26L) 这里 L是单词的平均长度。
public class WordDictionary {
TrieNode root = new TrieNode();
// Adds a word into the data structure.
public void addWord(String word) {
if (word == null) return;
TrieNode node = this.root;
int d = 0;
while (d < word.length()) {
int index = word.charAt(d) - 'a';
if (node.next[index] == null) node.next[index] = new TrieNode();
node = node.next[index];
d++;
}
node.isWord = true;
} // Returns if the word is in the data structure. A word could
// contain the dot character '.' to represent any one letter.
public boolean search(String word) {
return search(word, root, 0);
} private boolean search(String word, TrieNode node, int depth) {
if (node == null) return false;
if (depth == word.length()) return node.isWord;
char c = word.charAt(depth);
if (c != '.') {
return search(word, node.next[c - 'a'], depth + 1);
} else {
for (TrieNode nextNode : node.next) {
if (search(word, nextNode, depth + 1)) return true;
}
return false;
}
} private class TrieNode {
TrieNode[] next;
int R = 26;
boolean isWord; public TrieNode() {
this.next = new TrieNode[R];
}
}
} // Your WordDictionary object will be instantiated and called as such:
// WordDictionary wordDictionary = new WordDictionary();
// wordDictionary.addWord("word");
// wordDictionary.search("pattern");
Reference:
https://leetcode.com/discuss/35878/java-hashmap-backed-trie
https://leetcode.com/discuss/35928/my-simple-and-clean-java-code
https://leetcode.com/problems/implement-trie-prefix-tree/
https://leetcode.com/discuss/69963/python-168ms-beat-100%25-solution