树状数组 计算 任意连续N个值的和的时间复杂度为Log(n) 修改也是Log(n)
而普通数组修改是O(1) 计算和是O(n)
具体定义可以看这里:http://zh.wikipedia.org/zh-cn/%E6%A0%91%E7%8A%B6%E6%95%B0%E7%BB%84
或者看这个Blog:http://dongxicheng.org/structure/binary_indexed_tree/
这东西刚刚好可以解决 编程之美里面的 1.7光影切割问题
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Clover.Algoritms.DataStructure { public class TreeArray { private double[] items; private double[] data; public TreeArray(double[] data) { if (data == null || data.Length == 0) throw new ArgumentNullException("data"); this.items = new double[data.Length]; this.data = data; for (int i = 1; i <= items.Length; i++) { int start = i - Lowbit(i); double sum = 0; while (start < i) { sum += data[start]; start++; } items[i - 1] = sum; } } public double Sum(int k) { double ret = 0; while (k > 0) { ret += items[k - 1]; k -= Lowbit(k); } return ret; } public void Update(int k, int value) { int x = k - 1; var oldValue = this.data[x]; this.data[x] = value; for (int i = x; i < items.Length; i += Lowbit(i + 1)) { items[i] = items[i] - oldValue + value; } } public static int Lowbit(int i) { return i & -i; } } }