这道题建图还是很明白的:一个二分图,左边是单位,右边是餐桌,然后源点都向单位连一条容量为单位人数的边,每一个餐桌和汇点都连一条容量为餐桌容量的边(都叫容量~)。然后每一个单位向每一个餐桌都连一条容量为1的边,跑最大流即可。本来以为复杂度会很高,然而数据范围小,加上dinic玄学,很快就跑过了。
最后输出答案:如果最大流等于所有单位人数的话就说明满足要求,然后查询每一个单位的边的流量情况:如果这条边流满了,就说明该单位有一个人到了这一桌,那么输出该桌的编号。
后来知道这叫二分图多重匹配。
1 #include<cstdio> 2 #include<iostream> 3 #include<cmath> 4 #include<algorithm> 5 #include<cstring> 6 #include<cstdlib> 7 #include<cctype> 8 #include<vector> 9 #include<stack> 10 #include<queue> 11 using namespace std; 12 #define enter puts("") 13 #define space putchar(' ') 14 #define Mem(a) memset(a, 0, sizeof(a)) 15 typedef long long ll; 16 typedef double db; 17 const int INF = 0x3f3f3f3f; 18 const db eps = 1e-8; 19 const int maxn = 455; 20 inline ll read() 21 { 22 ll ans = 0; 23 char ch = getchar(), last = ' '; 24 while(!isdigit(ch)) {last = ch; ch = getchar();} 25 while(isdigit(ch)) {ans = ans * 10 + ch - '0'; ch = getchar();} 26 if(last == '-') ans = -ans; 27 return ans; 28 } 29 inline void write(ll x) 30 { 31 if(x < 0) x = -x, putchar('-'); 32 if(x >= 10) write(x / 10); 33 putchar(x % 10 + '0'); 34 } 35 36 int m, n, t, Sum; 37 struct Edge 38 { 39 int from, to, cap, flow; 40 }; 41 vector<Edge> edges; 42 vector<int> G[maxn]; 43 void addEdge(int from, int to, int w) 44 { 45 edges.push_back((Edge){from, to, w, 0}); 46 edges.push_back((Edge){to, from, 0, 0}); 47 int sz = edges.size(); 48 G[from].push_back(sz - 2); 49 G[to].push_back(sz - 1); 50 } 51 52 int dis[maxn]; 53 bool bfs() 54 { 55 Mem(dis); dis[0] = 1; 56 queue<int> q; q.push(0); 57 while(!q.empty()) 58 { 59 int now = q.front(); q.pop(); 60 for(int i = 0; i < (int)G[now].size(); ++i) 61 { 62 Edge& e = edges[G[now][i]]; 63 if(!dis[e.to] && e.cap > e.flow) 64 { 65 dis[e.to] = dis[now] + 1; 66 q.push(e.to); 67 } 68 } 69 } 70 return dis[t]; 71 } 72 int cur[maxn]; 73 int dfs(int now, int res) 74 { 75 if(now == t || res == 0) return res; 76 int flow = 0, f; 77 for(int& i = cur[now]; i < (int)G[now].size(); ++i) 78 { 79 Edge& e = edges[G[now][i]]; 80 if(dis[e.to] == dis[now] + 1 && (f = dfs(e.to, min(res, e.cap - e.flow))) > 0) 81 { 82 e.flow += f; 83 edges[G[now][i] ^ 1].flow -= f; 84 flow += f; 85 res -= f; 86 if(res == 0) break; 87 } 88 } 89 return flow; 90 } 91 92 int maxflow() 93 { 94 int flow = 0; 95 while(bfs()) 96 { 97 Mem(cur); 98 flow += dfs(0, INF); 99 } 100 return flow; 101 } 102 103 int main() 104 { 105 m = read(); n = read(); 106 t = n + m + 1; 107 for(int i = 1; i <= m; ++i) 108 { 109 int x = read(); Sum += x; 110 addEdge(0, i, x); 111 for(int j = 1; j <= n; ++j) addEdge(i, j + m, 1); 112 } 113 for(int i = 1; i <= n; ++i) addEdge(i + m, t, read()); 114 if(maxflow() == Sum) 115 { 116 write(1); enter; 117 for(int i = 1; i <= m; ++i) 118 { 119 for(int j = 0; j < (int)G[i].size(); ++j) 120 { 121 Edge e = edges[G[i][j]]; 122 if(e.to > m && e.cap - e.flow == 0) 123 write(e.to - m), space; 124 } 125 enter; 126 } 127 } 128 else write(0), enter; 129 return 0; 130 }View Code