最小路径覆盖问题

嘟嘟嘟

 

这里就讲怎么做……因为为什么这么做以及证明我都不知道……

首先,我们将原图的每一个点 i 都拆成 i 和 i +n 两个点。接着把所有 i 都和源点相连,边的容量为1,;把所有i + n 都和汇点相连,容量也为1。然后对于原图中的一条边(u, v),就在新图中连一条(u, v + n)的边。对该图跑最大流,则答案就是原来节点数 n - maxflow().

对于输出每个覆盖,我的方法比较暴力:在跑完maxflow()的残图上跑,如果该边流满了,就递归找这个节点的所有边。

最小路径覆盖问题最小路径覆盖问题
  1 #include<cstdio>
  2 #include<iostream>
  3 #include<cmath>
  4 #include<algorithm>
  5 #include<cstring>
  6 #include<cstdlib>
  7 #include<cctype>
  8 #include<vector>
  9 #include<stack>
 10 #include<queue>
 11 using namespace std;
 12 #define enter puts("") 
 13 #define space putchar(' ')
 14 #define Mem(a) memset(a, 0, sizeof(a))
 15 typedef long long ll;
 16 typedef double db;
 17 const int INF = 0x3f3f3f3f;
 18 const db eps = 1e-8;
 19 const int maxn = 155;
 20 inline ll read()
 21 {
 22     ll ans = 0;
 23     char ch = getchar(), last = ' ';
 24     while(!isdigit(ch)) {last = ch; ch = getchar();}
 25     while(isdigit(ch)) {ans = ans * 10 + ch - '0'; ch = getchar();}
 26     if(last == '-') ans = -ans;
 27     return ans;
 28 }
 29 inline void write(ll x)
 30 {
 31     if(x < 0) x = -x, putchar('-');
 32     if(x >= 10) write(x / 10);
 33     putchar(x % 10 + '0');
 34 }
 35 
 36 int n, m, t;
 37 struct Edge
 38 {
 39     int from, to, cap, flow;
 40 };
 41 vector<Edge> edges;
 42 vector<int> G[maxn << 1];
 43 void addEdge(int from, int to)
 44 {
 45     edges.push_back((Edge){from, to, 1, 0});
 46     edges.push_back((Edge){to, from, 0, 0});
 47     int sz = edges.size();
 48     G[from].push_back(sz - 2);
 49     G[to].push_back(sz - 1);
 50 }
 51 
 52 int dis[maxn << 1];
 53 bool bfs()
 54 {
 55     Mem(dis); dis[0] = 1;
 56     queue<int> q; q.push(0);
 57     while(!q.empty())
 58     {
 59         int now = q.front(); q.pop();
 60         for(int i = 0; i < (int)G[now].size(); ++i)
 61         {
 62             Edge& e = edges[G[now][i]];
 63             if(!dis[e.to] && e.cap > e.flow)
 64             {
 65                 dis[e.to] = dis[now] + 1;
 66                 q.push(e.to);
 67             }
 68         }
 69     }
 70     return dis[t];
 71 }
 72 int cur[maxn << 1];
 73 int dfs(int now, int res)
 74 {
 75     if(now == t || res == 0) return res;
 76     int flow = 0, f;
 77     for(int& i = cur[now]; i < (int)G[now].size(); ++i)
 78     {
 79         Edge& e = edges[G[now][i]];
 80         if(dis[e.to] == dis[now] + 1 && (f = dfs(e.to, min(res, e.cap - e.flow))) > 0)
 81         {
 82             e.flow += f;
 83             edges[G[now][i] ^ 1].flow -= f;
 84             flow += f;
 85             res -= f;
 86             if(res == 0) break;
 87         }
 88     }
 89     return flow;
 90 }
 91 
 92 int maxflow()
 93 {
 94     int flow = 0;
 95     while(bfs())
 96     {
 97         Mem(cur);
 98         flow += dfs(0, INF);
 99     }
100     return flow;
101 }
102 
103 bool vis[maxn];
104 void print(int now)
105 {
106     if(now <= 0) return;
107     vis[now] = 1;
108     write(now); space;
109     for(int i = 0; i < (int)G[now].size(); ++i)
110     {
111         Edge& e = edges[G[now][i]];
112         if(e.cap == e.flow) {print(e.to - n); break;}
113     }
114 }
115 
116 int main()
117 {
118     n = read(); m = read();
119     t = n + n + 1;
120     for(int i = 1; i <= n; ++i) addEdge(0, i), addEdge(i + n, t);
121     for(int i = 1; i <= m; ++i)
122     {
123         int x = read(), y = read();
124         addEdge(x, y + n);
125     }
126     int ans = n - maxflow();
127     for(int i = 1; i <= n; ++i) if(!vis[i])
128         print(i), enter;
129     write(ans); enter;
130     return 0;
131 }
View Code

 

上一篇:视频光流提取《FlowNet: Learning Optical Flow with Convolutional Networks》


下一篇:基于Intel®E810 的OVS-DPDK VXLAN TUNNEL性能优化