前言:
很多朋友看到我写的《算法导论》系列,可能会觉得云里雾里,不知所云。这里我再次说明,本系列博文时配合《算法导论》一书,给出该书涉及的算法的c++实现。请结合《算法导论》一书阅读该系列博文。我这里有该书的电子版,有需要的朋友可以留言。
正题:
今天讨论的算法是矩阵乘法的Strassen算法,该算法的精髓在于减少n/2矩阵*n/2矩阵的次数。首先,作一些写该算法的基础工作:
/*
* 矩阵的加法运算
*/
void Add(int** matrixA, int** matrixB, int** matrixResult,int length)
{
for(int i = ; i < length; i++) {
for(int j = ; j < length; j++) {
matrixResult[i][j] = matrixA[i][j] + matrixB[i][j];
}
}
} /*
* 矩阵的减法运算
*/
void Sub(int** matrixA, int** matrixB, int** matrixResult,int length)
{
for(int i = ; i < length; i++) {
for(int j = ; j < length; j++) {
matrixResult[i][j] = matrixA[i][j] - matrixB[i][j];
}
}
} /*
* 矩阵乘法
*/
void Mul(int** matrixA, int** matrixB, int** matrixResult){
for(int i = ; i < ; ++i) {
for(int j = ; j < ; ++j) {
matrixResult[i][j] = ;
for(int k = ; k < ; ++k) {
matrixResult[i][j] += matrixA[i][k] * matrixB[k][j];
}
}
}
}
接着进入核心部分:
void Strassen(int** matrixA, int** matrixB, int** matrixResult,int length)
{
int halfLength=length/;
int** a11=new int*[halfLength];
int** a12=new int*[halfLength];
int** a21=new int*[halfLength];
int** a22=new int*[halfLength]; int** b11=new int*[halfLength];
int** b12=new int*[halfLength];
int** b21=new int*[halfLength];
int** b22=new int*[halfLength]; int** s1=new int*[halfLength];
int** s2=new int*[halfLength];
int** s3=new int*[halfLength];
int** s4=new int*[halfLength];
int** s5=new int*[halfLength];
int** s6=new int*[halfLength];
int** s7=new int*[halfLength]; int** matrixResult11=new int*[halfLength];
int** matrixResult12=new int*[halfLength];
int** matrixResult21=new int*[halfLength];
int** matrixResult22=new int*[halfLength]; int** temp=new int*[halfLength];
int** temp1=new int*[halfLength];
if(halfLength==){
Mul(matrixA, matrixB, matrixResult);
}else{
//首先将矩阵A,B 分为4块
for(int i = ; i < halfLength; i++) {
a11[i]=new int[halfLength];
a12[i]=new int[halfLength];
a21[i]=new int[halfLength];
a22[i]=new int[halfLength]; b11[i]=new int[halfLength];
b12[i]=new int[halfLength];
b21[i]=new int[halfLength];
b22[i]=new int[halfLength]; s1[i]=new int[halfLength];
s2[i]=new int[halfLength];
s3[i]=new int[halfLength];
s4[i]=new int[halfLength];
s5[i]=new int[halfLength];
s6[i]=new int[halfLength];
s7[i]=new int[halfLength]; matrixResult11[i]=new int[halfLength];
matrixResult12[i]=new int[halfLength];
matrixResult21[i]=new int[halfLength];
matrixResult22[i]=new int[halfLength]; temp[i]=new int[halfLength];
temp1[i]=new int[halfLength];
for(int j = ; j < halfLength; j++) {
a11[i][j]=matrixA[i][j];
a12[i][j]=matrixA[i][j+halfLength];
a21[i][j]=matrixA[i+halfLength][j];
a22[i][j]=matrixA[i+halfLength][j+halfLength];
b11[i][j]=matrixB[i][j];
b12[i][j]=matrixB[i][j+halfLength];
b21[i][j]=matrixB[i+halfLength][j];
b22[i][j]=matrixB[i+halfLength][j+halfLength];
}
} //计算s1
Sub(b12, b22, temp,halfLength);
Strassen(a11, temp, s1,halfLength);
//计算s2
Add(a11, a12, temp,halfLength);
Strassen(temp, b22, s2,halfLength);
//计算s3
Add(a21, a22, temp,halfLength);
Strassen(temp, b11, s3,halfLength);
//计算s4
Sub(b21, b11, temp,halfLength);
Strassen(a22, temp, s4,halfLength);
//计算s5
Add(a11, a22, temp1,halfLength);
Add(b11, b22, temp,halfLength);
Strassen(temp1, temp, s5,halfLength);
//计算s6
Sub(a12, a22, temp1,halfLength);
Add(b21, b22, temp,halfLength);
Strassen(temp1, temp, s6,halfLength);
//计算s7
Sub(a11, a21, temp1,halfLength);
Add(b11, b12, temp,halfLength);
Strassen(temp1, temp, s7,halfLength); //计算matrixResult11
Add(s5, s4, temp1,halfLength);
Sub(temp1, s2, temp,halfLength);
Add(temp, s6, matrixResult11,halfLength);
//计算matrixResult12
Add(s1, s2, matrixResult12,halfLength);
//计算matrixResult21
Add(s3, s4, matrixResult21,halfLength);
//计算matrixResult22
Add(s5, s1, temp1,halfLength);
Sub(temp1, s3, temp,halfLength);
Sub(temp, s7, matrixResult22,halfLength); //结果送回matrixResult中
for(int i = ; i < halfLength; i++) {
for(int j = ; j < halfLength; j++) {
matrixResult[i][j]=matrixResult11[i][j];
matrixResult[i][j+halfLength]=matrixResult12[i][j];
matrixResult[i+halfLength][j]=matrixResult21[i][j];
matrixResult[i+halfLength][j+halfLength]=matrixResult22[i][j];
}
delete(a11[i]);
delete(a12[i]);
delete(a21[i]);
delete(a22[i]); delete(b11[i]);
delete(b12[i]);
delete(b21[i]);
delete(b22[i]); delete(s1[i]);
delete(s2[i]);
delete(s3[i]);
delete(s4[i]);
delete(s5[i]);
delete(s6[i]);
delete(s7[i]); delete(matrixResult11[i]);
delete(matrixResult12[i]);
delete(matrixResult21[i]);
delete(matrixResult22[i]); delete(temp[i]);
delete(temp1[i]);
}
delete(a11);
delete(a12);
delete(a21);
delete(a22); delete(b11);
delete(b12);
delete(b21);
delete(b22); delete(s1);
delete(s2);
delete(s3);
delete(s4);
delete(s5);
delete(s6);
delete(s7); delete(matrixResult11);
delete(matrixResult12);
delete(matrixResult21);
delete(matrixResult22); delete(temp);
delete(temp1);
}
}
该算法看着或许有些冗长,几乎一半都在进行动态指针的初始化和删除。利用该算法计算矩阵乘的时间复杂度为θ(n^lg7)。
测试一下吧:
#include "stdafx.h"
#include <iostream>
#include "SquareMatrix.h" using namespace std;
using namespace dksl; //STRASSEN矩阵乘法算法 const int N=; //常量N用来定义矩阵的大小
int _tmain(int argc, _TCHAR* argv[])
{
int **a=new int*[];
int **b=new int*[];
int **c=new int*[];
for(int i=;i<;i++)
{
a[i]=new int[];
b[i]=new int[];
c[i]=new int[];
for(int j=;j<;j++)
{
a[i][j]=;
b[i][j]=;
}
}
Strassen(a,b,c,);
for(int i=;i<;i++)
{
for(int j=;j<;j++)
cout<<c[i][j]<<" ";
cout<<endl;
}
system("PAUSE");
return ;
}