Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例

java 集合系列目录:

Java 集合系列 01 总体框架

Java 集合系列 02 Collection架构

Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例

Java 集合系列 04 LinkedList详细介绍(源码解析)和使用示例

Java 集合系列 05 Vector详细介绍(源码解析)和使用示例

Java 集合系列 06 Stack详细介绍(源码解析)和使用示例

Java 集合系列 07 List总结(LinkedList, ArrayList等使用场景和性能分析)

Java 集合系列 08 Map架构

Java 集合系列 09 HashMap详细介绍(源码解析)和使用示例

Java 集合系列 10 Hashtable详细介绍(源码解析)和使用示例

Java 集合系列 11 hashmap 和 hashtable 的区别

Java 集合系列 12 TreeMap

Java 集合系列 13 WeakHashMap

Java 集合系列 14 hashCode

Java 集合系列 15 Map总结

Java 集合系列 16 HashSet

Java 集合系列 17 TreeSet

概要

上一章,我们学习了Collection的架构。这一章开始,我们对Collection的具体实现类进行讲解;首先,讲解List,而List中ArrayList又最为常用。因此,本章我们讲解ArrayList。先对ArrayList有个整体认识,再学习它的源码,最后再通过例子来学习如何使用它。内容包括:
第1部分 ArrayList简介
第2部分 ArrayList数据结构
第3部分 ArrayList源码解析(基于JDK1.6.0_45)
第4部分 ArrayList遍历方式
第5部分 toArray()异常

第1部分 ArrayList介绍

ArrayList简介

ArrayList 是一个数组队列,相当于 动态数组。与Java中的数组相比,它的容量能动态增长。它继承于AbstractList,实现了List, RandomAccess, Cloneable, java.io.Serializable这些接口。

ArrayList 继承了AbstractList,实现了List。它是一个数组队列,提供了相关的添加、删除、修改、遍历等功能。
ArrayList 实现了RandmoAccess接口,即提供了随机访问功能。RandmoAccess是java中用来被List实现,为List提供快速访问功能的。在ArrayList中,我们即可以通过元素的序号快速获取元素对象;这就是快速随机访问。稍后,我们会比较List的“快速随机访问”和“通过Iterator迭代器访问”的效率。

ArrayList 实现了Cloneable接口,即覆盖了函数clone(),能被克隆。

ArrayList 实现java.io.Serializable接口,这意味着ArrayList支持序列化,能通过序列化去传输。

和Vector不同,ArrayList中的操作不是线程安全的!所以,建议在单线程中才使用ArrayList,而在多线程中可以选择Vector或者CopyOnWriteArrayList。

ArrayList构造函数

// 默认构造函数
ArrayList() // capacity是ArrayList的默认容量大小。当由于增加数据导致容量不足时,容量会添加上一次容量大小的一半。
ArrayList(int capacity) // 创建一个包含collection的ArrayList
ArrayList(Collection<? extends E> collection)

ArrayList的API

// Collection中定义的API
boolean add(E object)
boolean addAll(Collection<? extends E> collection)
void clear()
boolean contains(Object object)
boolean containsAll(Collection<?> collection)
boolean equals(Object object)
int hashCode()
boolean isEmpty()
Iterator<E> iterator()
boolean remove(Object object)
boolean removeAll(Collection<?> collection)
boolean retainAll(Collection<?> collection)
int size()
<T> T[] toArray(T[] array)
Object[] toArray()
// AbstractCollection中定义的API
void add(int location, E object)
boolean addAll(int location, Collection<? extends E> collection)
E get(int location)
int indexOf(Object object)
int lastIndexOf(Object object)
ListIterator<E> listIterator(int location)
ListIterator<E> listIterator()
E remove(int location)
E set(int location, E object)
List<E> subList(int start, int end)
// ArrayList新增的API
Object clone()
void ensureCapacity(int minimumCapacity)
void trimToSize()
void removeRange(int fromIndex, int toIndex)

第2部分 ArrayList数据结构

ArrayList的继承关系

java.lang.Object
↳ java.util.AbstractCollection<E>
↳ java.util.AbstractList<E>
↳ java.util.ArrayList<E> public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable {}

ArrayList与Collection关系如下图

Java 集合系列 03 ArrayList详细介绍(源码解析)和使用示例

ArrayList包含了两个重要的对象:elementData 和 size。

(01) elementData 是"Object[]类型的数组",它保存了添加到ArrayList中的元素。实际上,elementData是个动态数组,我们能通过构造函数 ArrayList(int initialCapacity)来执行它的初始容量为initialCapacity;如果通过不含参数的构造函数ArrayList()来创建ArrayList,则elementData的容量默认是10。elementData数组的大小会根据ArrayList容量的增长而动态的增长,具体的增长方式,请参考源码分析中的ensureCapacity()函数。

(02) size 则是动态数组的实际大小。

第3部分 ArrayList源码解析(基于JDK1.7.0_45)

为了更了解ArrayList的原理,下面对ArrayList源码代码作出分析。ArrayList是通过数组实现的,源码比较容易理解。

public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L; /**
* Default initial capacity.
*/
private static final int DEFAULT_CAPACITY = 10; /**
* Shared empty array instance used for empty instances.
*/
private static final Object[] EMPTY_ELEMENTDATA = {}; /**
* 保存ArrayList中数据的数组
*/
private transient Object[] elementData; /**
* The size of the ArrayList (the number of elements it contains).
*
* @serial
*/
private int size; /**
* Constructs an empty list with the specified initial capacity.
*
* @param initialCapacity the initial capacity of the list
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public ArrayList(int initialCapacity) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
} /**
* Constructs an empty list with an initial capacity of ten.
*/
public ArrayList() {
super();
this.elementData = EMPTY_ELEMENTDATA;
} /**
* Constructs a list containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this list
* @throws NullPointerException if the specified collection is null
*/
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
size = elementData.length;
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} /**
* Trims the capacity of this <tt>ArrayList</tt> instance to be the
* list's current size. An application can use this operation to minimize
* the storage of an <tt>ArrayList</tt> instance.
*/
public void trimToSize() {
modCount++;
if (size < elementData.length) {
elementData = Arrays.copyOf(elementData, size);
}
} /**
* Increases the capacity of this <tt>ArrayList</tt> instance, if
* necessary, to ensure that it can hold at least the number of elements
* specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
public void ensureCapacity(int minCapacity) {
int minExpand = (elementData != EMPTY_ELEMENTDATA)
// any size if real element table
? 0
// larger than default for empty table. It's already supposed to be
// at default size.
: DEFAULT_CAPACITY; if (minCapacity > minExpand) {
ensureExplicitCapacity(minCapacity);
}
} private void ensureCapacityInternal(int minCapacity) {
if (elementData == EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
} ensureExplicitCapacity(minCapacity);
} private void ensureExplicitCapacity(int minCapacity) {
modCount++; // overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
} /**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
*/
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);////新容量扩大到原容量的1.5倍,右移一位相关于原数值除以2。
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
} private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
} /**
* Returns the number of elements in this list.
*
* @return the number of elements in this list
*/
public int size() {
return size;
} /**
* Returns <tt>true</tt> if this list contains no elements.
*
* @return <tt>true</tt> if this list contains no elements
*/
public boolean isEmpty() {
return size == 0;
} /**
* Returns <tt>true</tt> if this list contains the specified element.
* More formally, returns <tt>true</tt> if and only if this list contains
* at least one element <tt>e</tt> such that
* <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
*
* @param o element whose presence in this list is to be tested
* @return <tt>true</tt> if this list contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o) >= 0;
} /**
* Returns the index of the first occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the lowest index <tt>i</tt> such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*/
public int indexOf(Object o) {
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
} /**
* Returns the index of the last occurrence of the specified element
* in this list, or -1 if this list does not contain the element.
* More formally, returns the highest index <tt>i</tt> such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
* or -1 if there is no such index.
*/
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
} /**
* Returns a shallow copy of this <tt>ArrayList</tt> instance. (The
* elements themselves are not copied.)
*
* @return a clone of this <tt>ArrayList</tt> instance
*/
public Object clone() {
try {
@SuppressWarnings("unchecked")
ArrayList<E> v = (ArrayList<E>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError();
}
} /**
* Returns an array containing all of the elements in this list
* in proper sequence (from first to last element).
*
* <p>The returned array will be "safe" in that no references to it are
* maintained by this list. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
* <p>This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this list in
* proper sequence
*/
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
} /**
* Returns an array containing all of the elements in this list in proper
* sequence (from first to last element); the runtime type of the returned
* array is that of the specified array. If the list fits in the
* specified array, it is returned therein. Otherwise, a new array is
* allocated with the runtime type of the specified array and the size of
* this list.
*
* <p>If the list fits in the specified array with room to spare
* (i.e., the array has more elements than the list), the element in
* the array immediately following the end of the collection is set to
* <tt>null</tt>. (This is useful in determining the length of the
* list <i>only</i> if the caller knows that the list does not contain
* any null elements.)
*
* @param a the array into which the elements of the list are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the list
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this list
* @throws NullPointerException if the specified array is null
*/
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
} // Positional Access Operations @SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
} /**
* Returns the element at the specified position in this list.
*
* @param index index of the element to return
* @return the element at the specified position in this list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E get(int index) {
rangeCheck(index); return elementData(index);
} /**
* Replaces the element at the specified position in this list with
* the specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E set(int index, E element) {
rangeCheck(index); E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
} /**
* Appends the specified element to the end of this list.
*
* @param e element to be appended to this list
* @return <tt>true</tt> (as specified by {@link Collection#add})
*/
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
} /**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
} /**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices).
*
* @param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
rangeCheck(index); modCount++;
E oldValue = elementData(index); int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work return oldValue;
} /**
* Removes the first occurrence of the specified element from this list,
* if it is present. If the list does not contain the element, it is
* unchanged. More formally, removes the element with the lowest index
* <tt>i</tt> such that
* <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
* (if such an element exists). Returns <tt>true</tt> if this list
* contained the specified element (or equivalently, if this list
* changed as a result of the call).
*
* @param o element to be removed from this list, if present
* @return <tt>true</tt> if this list contained the specified element
*/
public boolean remove(Object o) {
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} /*
* Private remove method that skips bounds checking and does not
* return the value removed.
*/
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
} /**
* Removes all of the elements from this list. The list will
* be empty after this call returns.
*/
public void clear() {
modCount++; // clear to let GC do its work
for (int i = 0; i < size; i++)
elementData[i] = null; size = 0;
} /**
* Appends all of the elements in the specified collection to the end of
* this list, in the order that they are returned by the
* specified collection's Iterator. The behavior of this operation is
* undefined if the specified collection is modified while the operation
* is in progress. (This implies that the behavior of this call is
* undefined if the specified collection is this list, and this
* list is nonempty.)
*
* @param c collection containing elements to be added to this list
* @return <tt>true</tt> if this list changed as a result of the call
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
} /**
* Inserts all of the elements in the specified collection into this
* list, starting at the specified position. Shifts the element
* currently at that position (if any) and any subsequent elements to
* the right (increases their indices). The new elements will appear
* in the list in the order that they are returned by the
* specified collection's iterator.
*
* @param index index at which to insert the first element from the
* specified collection
* @param c collection containing elements to be added to this list
* @return <tt>true</tt> if this list changed as a result of the call
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws NullPointerException if the specified collection is null
*/
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index); Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount int numMoved = size - index;
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved); System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
} /**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*
* @throws IndexOutOfBoundsException if {@code fromIndex} or
* {@code toIndex} is out of range
* ({@code fromIndex < 0 ||
* fromIndex >= size() ||
* toIndex > size() ||
* toIndex < fromIndex})
*/
protected void removeRange(int fromIndex, int toIndex) {
modCount++;
int numMoved = size - toIndex;
System.arraycopy(elementData, toIndex, elementData, fromIndex,
numMoved); // clear to let GC do its work
int newSize = size - (toIndex-fromIndex);
for (int i = newSize; i < size; i++) {
elementData[i] = null;
}
size = newSize;
} /**
* Checks if the given index is in range. If not, throws an appropriate
* runtime exception. This method does *not* check if the index is
* negative: It is always used immediately prior to an array access,
* which throws an ArrayIndexOutOfBoundsException if index is negative.
*/
private void rangeCheck(int index) {
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} /**
* A version of rangeCheck used by add and addAll.
*/
private void rangeCheckForAdd(int index) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} /**
* Constructs an IndexOutOfBoundsException detail message.
* Of the many possible refactorings of the error handling code,
* this "outlining" performs best with both server and client VMs.
*/
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
} /**
* Removes from this list all of its elements that are contained in the
* specified collection.
*
* @param c collection containing elements to be removed from this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (<a href="Collection.html#optional-restrictions">optional</a>)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (<a href="Collection.html#optional-restrictions">optional</a>),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean removeAll(Collection<?> c) {
return batchRemove(c, false);
} /**
* Retains only the elements in this list that are contained in the
* specified collection. In other words, removes from this list all
* of its elements that are not contained in the specified collection.
*
* @param c collection containing elements to be retained in this list
* @return {@code true} if this list changed as a result of the call
* @throws ClassCastException if the class of an element of this list
* is incompatible with the specified collection
* (<a href="Collection.html#optional-restrictions">optional</a>)
* @throws NullPointerException if this list contains a null element and the
* specified collection does not permit null elements
* (<a href="Collection.html#optional-restrictions">optional</a>),
* or if the specified collection is null
* @see Collection#contains(Object)
*/
public boolean retainAll(Collection<?> c) {
return batchRemove(c, true);
} private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try {
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
w += size - r;
}
if (w != size) {
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
} /**
* Save the state of the <tt>ArrayList</tt> instance to a stream (that
* is, serialize it).
*
* @serialData The length of the array backing the <tt>ArrayList</tt>
* instance is emitted (int), followed by all of its elements
* (each an <tt>Object</tt>) in the proper order.
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject(); // Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size); // Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
} if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
} /**
* Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
* deserialize it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA; // Read in size, and any hidden stuff
s.defaultReadObject(); // Read in capacity
s.readInt(); // ignored if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size); Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
} /**
* Returns a list iterator over the elements in this list (in proper
* sequence), starting at the specified position in the list.
* The specified index indicates the first element that would be
* returned by an initial call to {@link ListIterator#next next}.
* An initial call to {@link ListIterator#previous previous} would
* return the element with the specified index minus one.
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public ListIterator<E> listIterator(int index) {
if (index < 0 || index > size)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
} /**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @see #listIterator(int)
*/
public ListIterator<E> listIterator() {
return new ListItr(0);
} /**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
} /**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
} /**
* An optimized version of AbstractList.ListItr
*/
private class ListItr extends Itr implements ListIterator<E> {
ListItr(int index) {
super();
cursor = index;
} public boolean hasPrevious() {
return cursor != 0;
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[lastRet = i];
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
ArrayList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
} /**
* Returns a view of the portion of this list between the specified
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
* {@code fromIndex} and {@code toIndex} are equal, the returned list is
* empty.) The returned list is backed by this list, so non-structural
* changes in the returned list are reflected in this list, and vice-versa.
* The returned list supports all of the optional list operations.
*
* <p>This method eliminates the need for explicit range operations (of
* the sort that commonly exist for arrays). Any operation that expects
* a list can be used as a range operation by passing a subList view
* instead of a whole list. For example, the following idiom
* removes a range of elements from a list:
* <pre>
* list.subList(from, to).clear();
* </pre>
* Similar idioms may be constructed for {@link #indexOf(Object)} and
* {@link #lastIndexOf(Object)}, and all of the algorithms in the
* {@link Collections} class can be applied to a subList.
*
* <p>The semantics of the list returned by this method become undefined if
* the backing list (i.e., this list) is <i>structurally modified</i> in
* any way other than via the returned list. (Structural modifications are
* those that change the size of this list, or otherwise perturb it in such
* a fashion that iterations in progress may yield incorrect results.)
*
* @throws IndexOutOfBoundsException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, 0, fromIndex, toIndex);
} static void subListRangeCheck(int fromIndex, int toIndex, int size) {
if (fromIndex < 0)
throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
if (toIndex > size)
throw new IndexOutOfBoundsException("toIndex = " + toIndex);
if (fromIndex > toIndex)
throw new IllegalArgumentException("fromIndex(" + fromIndex +
") > toIndex(" + toIndex + ")");
} private class SubList extends AbstractList<E> implements RandomAccess {
private final AbstractList<E> parent;
private final int parentOffset;
private final int offset;
int size; SubList(AbstractList<E> parent,
int offset, int fromIndex, int toIndex) {
this.parent = parent;
this.parentOffset = fromIndex;
this.offset = offset + fromIndex;
this.size = toIndex - fromIndex;
this.modCount = ArrayList.this.modCount;
} public E set(int index, E e) {
rangeCheck(index);
checkForComodification();
E oldValue = ArrayList.this.elementData(offset + index);
ArrayList.this.elementData[offset + index] = e;
return oldValue;
} public E get(int index) {
rangeCheck(index);
checkForComodification();
return ArrayList.this.elementData(offset + index);
} public int size() {
checkForComodification();
return this.size;
} public void add(int index, E e) {
rangeCheckForAdd(index);
checkForComodification();
parent.add(parentOffset + index, e);
this.modCount = parent.modCount;
this.size++;
} public E remove(int index) {
rangeCheck(index);
checkForComodification();
E result = parent.remove(parentOffset + index);
this.modCount = parent.modCount;
this.size--;
return result;
} protected void removeRange(int fromIndex, int toIndex) {
checkForComodification();
parent.removeRange(parentOffset + fromIndex,
parentOffset + toIndex);
this.modCount = parent.modCount;
this.size -= toIndex - fromIndex;
} public boolean addAll(Collection<? extends E> c) {
return addAll(this.size, c);
} public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
int cSize = c.size();
if (cSize==0)
return false; checkForComodification();
parent.addAll(parentOffset + index, c);
this.modCount = parent.modCount;
this.size += cSize;
return true;
} public Iterator<E> iterator() {
return listIterator();
} public ListIterator<E> listIterator(final int index) {
checkForComodification();
rangeCheckForAdd(index);
final int offset = this.offset; return new ListIterator<E>() {
int cursor = index;
int lastRet = -1;
int expectedModCount = ArrayList.this.modCount; public boolean hasNext() {
return cursor != SubList.this.size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= SubList.this.size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[offset + (lastRet = i)];
} public boolean hasPrevious() {
return cursor != 0;
} @SuppressWarnings("unchecked")
public E previous() {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (offset + i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i;
return (E) elementData[offset + (lastRet = i)];
} public int nextIndex() {
return cursor;
} public int previousIndex() {
return cursor - 1;
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
SubList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void set(E e) {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.set(offset + lastRet, e);
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} public void add(E e) {
checkForComodification(); try {
int i = cursor;
SubList.this.add(i, e);
cursor = i + 1;
lastRet = -1;
expectedModCount = ArrayList.this.modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} final void checkForComodification() {
if (expectedModCount != ArrayList.this.modCount)
throw new ConcurrentModificationException();
}
};
} public List<E> subList(int fromIndex, int toIndex) {
subListRangeCheck(fromIndex, toIndex, size);
return new SubList(this, offset, fromIndex, toIndex);
} private void rangeCheck(int index) {
if (index < 0 || index >= this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private void rangeCheckForAdd(int index) {
if (index < 0 || index > this.size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
} private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+this.size;
} private void checkForComodification() {
if (ArrayList.this.modCount != this.modCount)
throw new ConcurrentModificationException();
}
}
}

总结
(01) ArrayList 实际上是通过一个数组去保存数据的。当我们构造ArrayList时;若使用默认构造函数,则ArrayList的默认容量大小是10
(02) 当ArrayList容量不足以容纳全部元素时,ArrayList会重新设置容量:新的容量=“(原始容量x3)/2 + 1”
(03) ArrayList的克隆函数,即是将全部元素克隆到一个数组中。
(04) ArrayList实现java.io.Serializable的方式。当写入到输出流时,先写入“容量”,再依次写入“每一个元素”;当读出输入流时,先读取“容量”,再依次读取“每一个元素”。

第4部分 ArrayList遍历方式

ArrayList支持3种遍历方式

(01) 第一种,通过迭代器遍历。即通过Iterator去遍历。

Integer value = null;
Iterator iter = list.iterator();
while (iter.hasNext()) {
value = (Integer)iter.next();
}

(02) 第二种,随机访问,通过索引值去遍历。
由于ArrayList实现了RandomAccess接口,它支持通过索引值去随机访问元素。

Integer value = null;
int size = list.size();
for (int i=0; i<size; i++) {
value = (Integer)list.get(i);
}

(03) 第三种,for循环遍历。如下:

Integer value = null;
for (Integer integ:list) {
value = integ;
}

下面通过一个实例,比较这3种方式的效率,实例代码(ArrayListRandomAccessTest.java)如下:

 import java.util.*;
import java.util.concurrent.*; /*
* @desc ArrayList遍历方式和效率的测试程序。
*
* @author
*/
public class ArrayListRandomAccessTest { public static void main(String[] args) {
List list = new ArrayList();
for (int i=0; i<100000; i++)
list.add(i);
//isRandomAccessSupported(list);
iteratorThroughRandomAccess(list) ;
iteratorThroughIterator(list) ;
iteratorThroughFor2(list) ; } private static void isRandomAccessSupported(List list) {
if (list instanceof RandomAccess) {
System.out.println("RandomAccess implemented!");
} else {
System.out.println("RandomAccess not implemented!");
} } public static void iteratorThroughRandomAccess(List list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for (int i=0; i<list.size(); i++) {
list.get(i);
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughRandomAccess:" + interval+" ms");
} public static void iteratorThroughIterator(List list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Iterator iter = list.iterator(); iter.hasNext(); ) {
iter.next();
}
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughIterator:" + interval+" ms");
} public static void iteratorThroughFor2(List list) { long startTime;
long endTime;
startTime = System.currentTimeMillis();
for(Object obj:list)
;
endTime = System.currentTimeMillis();
long interval = endTime - startTime;
System.out.println("iteratorThroughFor2:" + interval+" ms");
}
}

运行结果

iteratorThroughRandomAccess:3 ms
iteratorThroughIterator:8 ms
iteratorThroughFor2:5 ms

由此可见,遍历ArrayList时,使用随机访问(即,通过索引序号访问)效率最高,而使用迭代器的效率最低!

第5部分 toArray()异常

当我们调用ArrayList中的 toArray(),可能遇到过抛出“java.lang.ClassCastException”异常的情况。下面我们说说这是怎么回事。

ArrayList提供了2个toArray()函数:

Object[] toArray()
<T> T[] toArray(T[] contents)

调用 toArray() 函数会抛出“java.lang.ClassCastException”异常,但是调用 toArray(T[] contents) 能正常返回 T[]。

toArray() 会抛出异常是因为 toArray() 返回的是 Object[] 数组,将 Object[] 转换为其它类型(如如,将Object[]转换为的Integer[])则会抛出“java.lang.ClassCastException”异常,因为Java不支持向下转型。具体的可以参考前面ArrayList.java的源码介绍部分的toArray()。
解决该问题的办法是调用 <T> T[] toArray(T[] contents) , 而不是 Object[] toArray()。

调用 toArray(T[] contents) 返回T[]的可以通过以下几种方式实现。

// toArray(T[] contents)调用方式一
public static Integer[] vectorToArray1(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
v.toArray(newText);
return newText;
} // toArray(T[] contents)调用方式二。最常用!
public static Integer[] vectorToArray2(ArrayList<Integer> v) {
Integer[] newText = (Integer[])v.toArray(new Integer[0]);
return newText;
} // toArray(T[] contents)调用方式三
public static Integer[] vectorToArray3(ArrayList<Integer> v) {
Integer[] newText = new Integer[v.size()];
Integer[] newStrings = (Integer[])v.toArray(newText);
return newStrings;
}

下面使用上述方式二,

 public class test_1 {
public static void main(String[] args){
ArrayList<String> ls = new ArrayList<String>();
ls.add("a");
ls.add("b");
ls.add("c");
ls.add("d");
//重点看下 toArray 的方法
String[] obj = (String[]) ls.toArray(new String[0]);
for(int i=0;i<obj.length;i++){
System.out.println(obj[i]);
}
}
}

这里重点把 java.util.ArrayList.toArray源码看下:

public <T> T[] toArray(T[] a) {
if (a.length < size)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}

从源码中可以看到:

如果指定的数组不能容纳列表,将分配一个具有指定数组的运行时类型和此列表大小的新数组,否则,则将该列表返回此处。
如果指定的数组能容纳队列,并有剩余的空间(即数组的元素比队列多),那么会将数组中紧接 collection 尾部的元素设置为 null。


转载:http://www.cnblogs.com/skywang12345/p/3308556.html

上一篇:shell笔记-local、export用法 、declare、set


下一篇:给GRUB中的菜单加入密码。