The Doors
Input
2
4 2 7 8 9
7 3 4.5 6 7
The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.
Output
Sample Input
1 5 4 6 7 8 2 4 2 7 8 9 7 3 4.5 6 7 -1
Sample Output
10.00 10.06
题目就是说,给你一个10*10的正方形房间,里面会用一些垂直与x轴的墙隔开.每个墙上有两个门,然后给你门的两个端点坐标,要求求出从(0,5)走到(10,5)的最短路;
那其实本质上就是最短路,如果没有墙隔开,就单单这几个点,那就很水了.现在还要求判断一下,某两点之间是否可以直达.所谓直达,就是,这两点的连线不与其他任何墙相交(交于端点是允许的).
至此,题目解完了.
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cmath> #define INF 10000000 using namespace std; ; int n; ][]; ]; ],o; double dis(point a,point b){return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));} :x>eps;} double cross(point a,point b){return a.x*b.y-a.y*b.x;} point operator - (point a,point b){point ret; ret.x=a.x-b.x,ret.y=a.y-b.y; return ret;} int Intersect(point a,point b,point c,point d){ double s1,s2,s3,s4; int d1,d2,d3,d4; d1=dcmp(s1=cross(a-c,b-c)); d2=dcmp(s2=cross(a-d,b-d)); d3=dcmp(s3=cross(c-a,d-a)); d4=dcmp(s4=cross(c-b,d-b)); &&(d3^d4)==-) ; ; } int main(){ ; scanf("%d",&n)){ ,cnt0=; P[].x=,P[].y=; ; i<n; i++){ double x,y1,y2,y3,y4; scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4); P[cnt].x=x,P[cnt++].y=y1; P[cnt].x=x,P[cnt++].y=y2; P[cnt].x=x,P[cnt++].y=y3; P[cnt].x=x,P[cnt++].y=y4; seg[cnt0].a.x=x,seg[cnt0].a.y=,seg[cnt0].b.x=x,seg[cnt0++].b.y=y1; seg[cnt0].a.x=x,seg[cnt0].a.y=y2,seg[cnt0].b.x=x,seg[cnt0++].b.y=y3; seg[cnt0].a.x=x,seg[cnt0].a.y=y4,seg[cnt0].b.x=x;seg[cnt0++].b.y=; } P[cnt].x=,P[cnt].y=; ; i<=cnt; i++){ ; j<=cnt; j++) cost[i][j]=INF; cost[i][i]=; } ; i<=cnt; i++){ ; j<=cnt; j++) if (j!=i){ o.a.x=P[i].x,o.a.y=P[i].y,o.b.x=P[j].x,o.b.y=P[j].y; ; ; k<cnt0; k++) ){flag=; break;} ) cost[i][j]=dis(P[i],P[j]); } } ; k<=cnt; k++) ; i<=cnt; i++) ; j<=cnt; j++) if (cost[i][k]+cost[k][j]<cost[i][j]) cost[i][j]=cost[i][k]+cost[k][j]; printf(][cnt]); } ; }