编程语言主要从以下几个角度为进行分类,编译型和解释型、静态语言和动态语言、强类型定义语言和弱类型定义语言,每个分类代表什么意思呢,我们一起来看一下。
编译和解释的区别是什么?
编译器是把源程序的每一条语句都编译成机器语言,并保存成二进制文件,这样运行时计算机可以直接以机器语言来运行此程序,速度很快;
而解释器则是只在执行程序时,才一条一条的解释成机器语言给计算机来执行,所以运行速度是不如编译后的程序运行的快的.
这是因为计算机不能直接认识并执行我们写的语句,它只能认识机器语言(是二进制的形式)
所以我们说,两者最终的目的都是要将源程序编译成计算机认识的二进制代码,只不过实现的方式不一样罢了
一、低级语言与高级语言
低级语言:
1.最初的计算机程序都是用0和1的序列表示的,程序员直接使用的是机器指令,无需翻译,从纸带打孔输入即可执行得到结果。
2.后来为了方便记忆,就将用0、1序列表示的机器指令都用符号助记,这些与机器指令一一对应的助记符就成了汇编指令,从而诞生了汇编语言。
3.无论是机器指令还是汇编指令都是面向机器的,统称为低级语言。
高级语言:
1.高级语言是从人类的逻辑思维角度出发的计算机语言,抽象程度大大提高,需要经过编译成特定机器上的目标代码才能执行,一条高级语言的语句往往需要若干条机器指令来完成。
2.高级语言独立于低级语言的特性是高级语言靠编译器为不同机器生成不同的目标代码(或机器指令)来实现的。那具体的说,要将高级语言编译到什么程度呢,这又跟编译的技术有关了,既可以编译成直接可执行的目标代码,也可以编译成一种中间表示,然后拿到
不同的机器和系统上去执行,这种情况通常又需要支撑环境,比如解释器或虚拟机的支持,Java程序编译成bytecode,再由不同平台上的虚拟机执行就是很好的例子。
3.所以,说高级语言不依赖于机器,是指在不同的机器或平台上,程序本身不变,而通过编译器编译得到的目标代码去适应不同的机器。这就是我们通常所说的可移植性
二、编译型语言与解释型语言
编译型语言:
1.有一个负责翻译的程序来对我们的源代码进行转换,生成相对应的可执行代码。这个过程说得专业一点,就称为编译(Compile),而负责编译的程序自然就称为编译器(Compiler)。
2.一般一个源文件的编译都会对应一个目标文件。这些目标文件里的内容基本上已经是可执行代码了
3.待源文件的编译都大功告成,我们就可以最后把半成品的目标文件“打包”成一个可执行文件了,这个工作由另一个程序负责完成,由于此过程好像是把包含可执行代码的目标文件连接装配起来,所以又称为链接(Link),而负责链接的程序就叫链接程序
(Linker)。链接程序除了链接目标文件外,可能还有各种资源,像图标文件啊、声音文件啊什么的,还要负责去除目标文件之间的冗余重复代码,等等,所以……也是挺累的。链接完成之后,一般就可以得到我们想要的可执行文件了。
解释型语言:
1.在程序运行的前一刻,还只有源程序而没有可执行程序;而程序每执行到源程序的某一条指令,则会有一个称之为解释程序的外壳程序将源代码转换成二进制代码以供执行。
2.总言之,就是不断地解释、执行、解释、执行……所以,解释型程序是离不开解释器的
所以从字面上看,“编译”和“解释”的确都有“翻译”的意思,它们的区别则在于翻译的时机安排不大一样。打个比方:假如你打算阅读一本外文书,而你不知道这门外语,那么你可以找一名翻译,给他足够的时间让他从头到尾把整本书翻译好,然后把书的母语版交给你阅读;或者,你也立刻让这名翻译辅助你阅读,让他一句一句给你翻译,如果你想往回看某个章节,他也得重新给你翻译。
两类语言的利弊:
1.编译型语言在修改了源代码之后,需要对程序进行重新的编译,那如果整个项目的文件特别多的时候,编译的速度就会特别的耗时特别的慢。
2.但是解释型程序省却了编译的步骤,修改调试也非常方便,编辑完毕之后即可立即运行,不必像编译型程序一样每次进行小小改动都要耐心等待漫长的Compiling…Linking…这样的编译链接过程。
3.不过凡事有利有弊,由于解释型程序是将编译的过程放到执行过程中,这就决定了解释型程序注定要比编译型慢上一大截,像几百倍的速度差距也是不足为奇的。
4.因此像开发操作系统、大型应用程序、数据库系统等时都采用编译型语言,像C/C++、Pascal/Object Pascal(Delphi)、VB等基本都可视为编译语言,而一些网页脚本、服务器脚本及辅助开发接口这样的对速度要求不高、对不同系统平台间的
兼容性有一定要求的程序则通常使用解释性语言,如Java、JavaScript、php、Perl、Python等等。
但既然编译型与解释型各有优缺点又相互对立,所以一批新兴的语言都有把两者折衷起来的趋势,例如Java语言虽然比较接近解释型语言的特征,但在执行之前已经预先进行一次预编译,生成的代码是介于机器码和Java源代码之间的中介代码,运行的时候则由JVM(Java的虚拟机平台,可视为解释器)解释执行。它既保留了源代码的高抽象、可移植的特点,又已经完成了对源代码的大部分预编译工作,所以执行起来比“纯解释型”程序要快许多。而像VB6(或者以前版本)、C#这样的语言,虽然表面上看生成的是.exe可执行程序文件,但VB6编译之后实际生成的也是一种中介码,只不过编译器在前面安插了一段自动调用某个外部解释器的代码(该解释程序独立于用户编写的程序,存放于系统的某个DLL文件中,所有以VB6编译生成的可执行程序都要用到它),以解释执行实际的程序体。C#(以及其它.net的语言编译器)则是生成.net目标代码,实际执行时则由.net解释系统(就像JVM一样,也是一个虚拟机平台)进行执行。当然.net目标代码已经相当“低级”,比较接近机器语言了,所以仍将其视为编译语言,而且其可移植程度也没有Java号称的这么强大,Java号称是“一次编译,到处执行”,而.net则是“一次编码,到处编译”。呵呵,当然这些都是题外话了。总之,随着设计技术与硬件的不断发展,编译型与解释型两种方式的界限正在不断变得模糊。
动态语言和静态语言
通常我们所说的动态语言、静态语言是指动态类型语言和静态类型语言。
1.动态类型语言:动态类型语言是指在运行期间才去做数据类型检查的语言,也就是说,在用动态类型的语言编程时,永远也不用给任何变量指定数据类型,该语言会在你第一次赋值给变量时,在内部将数据类型记录下来。Python和Ruby就是一种典型的
动态类型语言,其他的各种脚本语言如VBScript也多少属于动态类型语言。
2.静态类型语言:静态类型语言与动态类型语言刚好相反,它的数据类型是在编译其间检查的,也就是说在写程序时要声明所有变量的数据类型,C/C++是静态类型语言的典型代表,其他的静态类型语言还有C#、JAVA等。
强类型定义语言和弱类型定义语言
1.强类型定义语言:强制数据类型定义的语言。也就是说,一旦一个变量被指定了某个数据类型,如果不经过强制转换,那么它就永远是这个数据类型了。
举个例子:如果你定义了一个整型变量a,那么程序根本不可能将a当作字符串类型处理。强类型定义语言是类型安全的语言。
2. 弱类型定义语言:数据类型可以被忽略的语言。它与强类型定义语言相反, 一个变量可以赋不同数据类型的值。
强类型定义语言在速度上可能略逊色于弱类型定义语言,但是强类型定义语言带来的严谨性能够有效的避免许多错误。另外,“这门语言是不是动态语言”与“这门语言是否类型安全”之间是完全没有联系的!
例如:Python是动态语言,是强类型定义语言(类型安全的语言); VBScript是动态语言,是弱类型定义语言(类型不安全的语言); JAVA是静态语言,是强类型定义语言(类型安全的语言)。
通过上面这些介绍,我们可以得出,python是一门动态解释性的强类型定义语言。
Python的优缺点:
先看优点
1.Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。
2.开发效率非常高,Python有非常强大的第三方库,基本上你想通过计算机实现任何功能,Python官方库里都有相应的模块进行支持,直接下载调用后,在基础库的基础上再进行开发,大大降低开发周期,避免重复造*。
3.高级语言————当你用Python语言编写程序的时候,你无需考虑诸如如何管理你的程序使用的内存一类的底层细节
4.可移植性————由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工 作在不同平台上)。如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就几乎可以在市场上所有的系统平台上运行
5.可扩展性————如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。
6.可嵌入性————你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。
再看缺点:
1.速度慢,Python 的运行速度相比C语言确实慢很多,跟JAVA相比也要慢一些,但其实这里所指的运行速度慢在大多数情况下用户是无法直接感知到的,必须借助测试工具才能体现出来
比如你用C运一个程序花了0.1s,用Python是0.01s,这样C语言直接比Python快了10s,算是非常夸张了,但是你是无法直接通过肉眼感知的,其实在大多数情况下Python已经完全可以满足你对程序速度的要求,除非你要写对速度要求极高的搜索引擎等
2.代码不能加密,因为PYTHON是解释性语言,它的源码都是以名文形式存放的,不过我不认为这算是一个缺点,如果你的项目要求源代码必须是加密的,那你一开始就不应该用Python来去实现。
3.线程不能利用多CPU问题,这是Python被人诟病最多的一个缺点,GIL即全局解释器锁(Global Interpreter Lock),是计算机程序设计语言解释器用于同步线程的工具,使得任何时刻仅有一个线程在执行,Python的线程是操作系统的原生线程。在Linux上为
pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。
任何一门语言都不是完美的,都有擅长和不擅长做的事情,建议各位不要拿一个语言的劣势去跟另一个语言的优势来去比较,语言只是一个工具,是实现程序设计师思想的工具
Python的解释器:
当我们编写Python代码时,我们得到的是一个包含Python代码的以.py
为扩展名的文本文件。要运行代码,就需要Python解释器去执行.py
文件。
由于整个Python语言从规范到解释器都是开源的,所以理论上,只要水平够高,任何人都可以编写Python解释器来执行Python代码(当然难度很大)。事实上,确实存在多种Python解释器。
CPython
当我们从Python官方网站下载并安装好Python 2.7后,我们就直接获得了一个官方版本的解释器:CPython。这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python
就是启动CPython解释器。
CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。
IPython
IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。
CPython用>>>
作为提示符,而IPython用In [
序号
]:
作为提示符。
PyPy
PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显著提高Python代码的执行速度。
绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点。
Jython
Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。
IronPython
IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。
Python的解释器很多,但使用最广泛的还是CPython。如果要和Java或.Net平台交互,最好的办法不是用Jython或IronPython,而是通过网络调用来交互,确保各程序之间的独立性。
Python的发展史:
- 1989年,为了打发圣诞节假期,Guido开始写Python语言的编译器。Python这个名字,来自Guido所挚爱的电视剧Monty Python’s Flying Circus。他希望这个新的叫做Python的语言,能符合他的理想:创造一种C和shell之间,功能全面,易学易用,可拓展的语言。
- 1991年,第一个Python编译器诞生。它是用C语言实现的,并能够调用C语言的库文件。从一出生,Python已经具有了:类,函数,异常处理,包含表和词典在内的核心数据类型,以及模块为基础的拓展系统。
- Granddaddy of Python web frameworks, Zope 1 was released in 1999
- Python 1.0 - January 1994 增加了 lambda, map, filter and reduce.
- Python 2.0 - October 16, 2000,加入了内存回收机制,构成了现在Python语言框架的基础
- Python 2.4 - November 30, 2004, 同年目前最流行的WEB框架Django 诞生
- Python 2.5 - September 19, 2006
- Python 2.6 - October 1, 2008
- Python 2.7 - July 3, 2010
- In November 2014, it was announced that Python 2.7 would be supported until 2020, and reaffirmed that there would be no 2.8 release as users were expected to move to Python 3.4+ as soon as possible
- Python 3.0 - December 3, 2008
- Python 3.1 - June 27, 2009
- Python 3.2 - February 20, 2011
- Python 3.3 - September 29, 2012
- Python 3.4 - March 16, 2014
- Python 3.5 - September 13, 2015
Python 2 or 3?
In summary : Python 2.x is legacy, Python 3.x is the present and future of the language
Python 3.0 was released in 2008. The final 2.x version 2.7 release came out in mid-2010, with a statement of
extended support for this end-of-life release. The 2.x branch will see no new major releases after that. 3.x is
under active development and has already seen over five years of stable releases, including version 3.3 in 2012,
3.4 in 2014, and 3.5 in 2015. This means that all recent standard library improvements, for example, are only
available by default in Python 3.x.
Guido van Rossum (the original creator of the Python language) decided to clean up Python 2.x properly, with less regard for backwards compatibility than is the case for new releases in the 2.x range. The most drastic improvement is the better Unicode support (with all text strings being Unicode by default) as well as saner bytes/Unicode separation.
Besides, several aspects of the core language (such as print and exec being statements, integers using floor division) have been adjusted to be easier for newcomers to learn and to be more consistent with the rest of the language, and old cruft has been removed (for example, all classes are now new-style, "range()" returns a memory efficient iterable, not a list as in 2.x).
py2与3的详细区别
PRINT IS A FUNCTION
The statement has been replaced with a print() function, with keyword arguments to replace most of the special syntax of the old statement (PEP 3105). Examples:
Old: print "The answer is", 2*2 New: print("The answer is", 2*2) Old: print x, # Trailing comma suppresses newline New: print(x, end=" ") # Appends a space instead of a newline Old: print # Prints a newline New: print() # You must call the function! Old: print >>sys.stderr, "fatal error" New: print("fatal error", file=sys.stderr) Old: print (x, y) # prints repr((x, y)) New: print((x, y)) # Not the same as print(x, y)!
ALL IS UNICODE NOW
从此不再为讨厌的字符编码而烦恼
Python安装
windows
1、下载安装包 https://www.python.org/downloads/ 2、安装 默认安装路径:C:\python27 3、配置环境变量 【右键计算机】--》【属性】--》【高级系统设置】--》【高级】--》【环境变量】--》【在第二个内容框中找到 变量名为Path 的一行,双击】 --> 【Python安装目录追加到变值值中,用 ; 分割】 如:原来的值;C:\python27,切记前面有分号
linux、Mac
无需安装,原装Python环境 ps:如果自带2.6,请更新至2.7