问题:令f(n)为n各个位数字之和。n的Digital Root是f(f(...f(n))),是一位数字。现在给你A1,A2...An,n个数,求A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1的Digitial Root。
Problem: Let f(n) be a sum of digits for positive integer n. If f(n) is one-digit number then it is a digital root for n and otherwise digital root of n is equal to digital root of f(n). For example, digital root of 987 is 6. Your task is to find digital root for expression A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1.
解法:首先明确DR(A + B) = DR(DR(A) + DR(B)),继续推导有DR(A * B) = DR(DR(A) * DR(B))。
设S1 = A1*A2*…*AN + A1*A2*…*AN-1 + … + A1*A2 + A1,
DR(S1)
= DR(A1 + A1 * S2)
= DR(DR(A1) + DR(DR(A1)*DR(S2)))
= DR(DR(A1) + DR(DR(A1)*DR(A2 + A2*S3)))
= DR(DR(A1) + DR(DR(A1)*DR(A2)) + DR(DR(A1)*DR(A2)*DR(S3)))
=DR(Sum(DR(A1)*...*DR(Ai))) (i=1-->N)
#include <iostream> #include <stdio.h> #include <cstring> using namespace std; int a[1010],cas,n,ans,tt; int f(int x) { if (x<10) return x; int sum = 0; while (x) { sum += x%10; x /= 10; } return f(sum); } int main() { scanf("%d",&cas); while (cas--) { scanf("%d",&n); for (int i=1;i<=n;i++) scanf("%d",&a[i]); ans = tt = f(a[1]); for (int i=2;i<=n;i++) { tt = f(tt*f(a[i])); ans += tt; } printf("%d\n",f(ans)); } return 0; }