题目:
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Example 1:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1 Output: 3 Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4 Output: 5 Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.
Example 3:
Input: root = [1,2], p = 1, q = 2 Output: 1
Constraints:
- The number of nodes in the tree is in the range
[2, 105]
. -109 <= Node.val <= 109
- All
Node.val
are unique. p != q
-
p
andq
will exist in the tree.
代码:
又是一题二叉树~
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
void findNode(TreeNode* root, TreeNode* p, vector<TreeNode*>& path) {
if(root == NULL)
return;
if(root->val == p->val)
{
path.push_back(root);
return;
}
if(root->left != NULL)
{
path.push_back(root);
findNode(root->left, p, path);
if(path[path.size()-1]->val != p->val)
path.pop_back();
}
if(root->right != NULL)
{
path.push_back(root);
findNode(root->right, p, path);
if(path[path.size()-1]->val != p->val)
path.pop_back();
}
return;
}
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
vector<TreeNode*> p_path, q_path;
findNode(root, p, p_path);
findNode(root, q, q_path);
TreeNode* ans = root;
for(int i = 0; i<p_path.size() && i<q_path.size(); i++)
{
if(p_path[i] != q_path[i])
{
break;
}
ans = p_path[i];
}
return ans;
}
};
新的一个月~加油吧!