Problem Description
A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.
Note: the number of first circle should always be 1.
Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in
lexicographical order.
You are to write a program that completes above process.
Print a blank line after each case.
You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8
思路:经典题目。
Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
#include <stdio.h> #include <math.h> bool isprime[38],vis[20]; int n,A[20]; void trackback(int cur) { int i; if(cur==n+1 && isprime[A[1]+A[n]]) { for(i=1;i<=n;i++) { printf("%d",A[i]); if(i<n) printf(" "); else printf("\n"); } } else if(cur<=n) { for(i=2;i<=n;i++) { if(isprime[A[cur-1]+i] && !vis[i]) { A[cur]=i; vis[i]=1; trackback(cur+1); vis[i]=0; } } } } int main() { int i,j,count=1; for(i=2;i<=37;i++)//初始化素数表 { isprime[i]=1; for(j=2;j<=sqrt(i);j++) { if(i%j==0) { isprime[i]=0; break; } } } for(i=1;i<=19;i++) vis[i]=0;//标志数组清零 A[1]=1; while(~scanf("%d",&n)) { printf("Case %d:\n",count++); trackback(2); printf("\n"); } }