题意:
俗话说一分钱难倒英雄汉,高中几年下来,吉哥已经深深明白了这个道理,因此,新年开始存储一年的个人资金已经成了习惯,不过自从大学之后他不好意思再向大人要压岁钱了,只能把唯一的希望放到自己身上。可是由于时间段的特殊性和自己能力的因素,只能找到些零零碎碎的工作,吉哥想知道怎么安排自己的假期才能获得最多的工资。
已知吉哥一共有m天的假期,每天的编号从1到m,一共有n份可以做的工作,每份工作都知道起始时间s,终止时间e和对应的工资c,每份工作的起始和终止时间以天为单位(即天数编号),每份工作必须从起始时间做到终止时间才能得到总工资c,且不能存在时间重叠的工作。比如,第1天起始第2天结束的工作不能和第2天起始,第4天结束的工作一起被选定,因为第2天吉哥只能在一个地方工作。
现在,吉哥想知道怎么安排才能在假期的m天内获得最大的工资数(第m+1天吉哥必须返回学校,m天以后起始或终止的工作是不能完成的)
思路:dp[j]=max(dp[j],dp[j-salary[i].s-1]+salary[i].val),当然还要以salary.s排序
#include <iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node{
int s,e,val;
}salary[1100];
bool cmp(node a,node b){
return a.s<b.s;
}
int dp[1100];
int main(int argc, char** argv) {
int t,n,m,i,j,x,y,z,k;
scanf("%d",&t);
while(t--){
k=0;
memset(dp,0,sizeof(dp));
scanf("%d%d",&n,&m);
for(i=0;i<m;i++){
scanf("%d%d%d",&x,&y,&z);
if(x<=0||x>n||y<=0||y>n)
continue;
salary[k].s=x;
salary[k].e=y;
salary[k++].val=z;
}
sort(salary,salary+k,cmp);
for(i=0;i<k;i++){
for(j=n;j>=salary[i].e;j--){ dp[j]=max(dp[j],dp[salary[i].s-1]+salary[i].val);
}
}
/*
for(i=1;i<=n;i++)
printf("%d\n",dp[i]);
printf("\n");
*/
printf("%d\n",dp[n]);
}
return 0;
}