HBase+Hive+Spark+ClickHouse
在HBase中建表,通过Hive与HBase建立映射关系,实现双方新增数据后彼此都可以查询到。
通过spark将Hive中的数据读取到并经过处理保存到ClickHouse中
一 Hbase
1 Hbase表操作
1.1 创建命名空间
hbase(main):008:0> create_namespace 'zxy',{'hbasename'=>'hadoop'}
0 row(s) in 0.0420 seconds
1.2 创建列簇
hbase(main):012:0> create 'zxy:t1',{NAME=>'f1',VERSIONS=>5}
0 row(s) in 2.4850 seconds
hbase(main):014:0> list 'zxy:.*'
TABLE
zxy:t1
1 row(s) in 0.0200 seconds
=> ["zxy:t1"]
hbase(main):015:0> describe 'zxy:t1'
Table zxy:t1 is ENABLED
zxy:t1
COLUMN FAMILIES DESCRIPTION
{NAME => 'f1', BLOOMFILTER => 'ROW', VERSIONS => '5', IN_MEMORY => 'false', KEEP_DELETED_C
ELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', M
IN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE => '0'}
{
1.3 按行导入数据
hbase(main):016:0> put 'zxy:t1','r1','f1:name','zxy'
0 row(s) in 0.1080 seconds
hbase(main):028:0> append 'zxy:t1','r1','f1:id','001'
0 row(s) in 0.0400 seconds
hbase(main):029:0> scan 'zxy:t1'
ROW COLUMN+CELL
r1 column=f1:id, timestamp=1627714724257, value=001
r1 column=f1:name, timestamp=1627714469210, value=zxy
1 row(s) in 0.0120 seconds
hbase(main):030:0> append 'zxy:t1','r2','f1:id','002'
0 row(s) in 0.0060 seconds
hbase(main):031:0> append 'zxy:t1','r2','f1:name','bx'
0 row(s) in 0.0080 seconds
hbase(main):032:0> append 'zxy:t1','r3','f1:id','003'
0 row(s) in 0.0040 seconds
hbase(main):033:0> append 'zxy:t1','r3','f1:name','zhg'
0 row(s) in 0.0040 seconds
hbase(main):034:0> scan 'zxy:t1'
ROW COLUMN+CELL
r1 column=f1:id, timestamp=1627714724257, value=001
r1 column=f1:name, timestamp=1627714469210, value=zxy
r2 column=f1:id, timestamp=1627714739647, value=002
r2 column=f1:name, timestamp=1627714754108, value=bx
r3 column=f1:id, timestamp=1627714768018, value=003
r3 column=f1:name, timestamp=1627714778121, value=zhg
3 row(s) in 0.0190 seconds
二 Hive
1 建立Hbase关联表
hive (zxy)> create external table if not exists t1(
> uid string,
> id int,
> name string
> )
> STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
> WITH SERDEPROPERTIES ("hbase.columns.mapping" = ":key,f1:id,f1:name")
> TBLPROPERTIES ("hbase.table.name" = "zxy:t1");
OK
Time taken: 0.306 seconds
hive (zxy)> select * from t1
> ;
OK
r1 1 zxy
r2 2 bx
r3 3 zhg
Time taken: 0.438 seconds, Fetched: 3 row(s)
2 Hbase添加数据
hbase添加数据
hbase(main):002:0> append 'zxy:t1','r4','f1:id','004'
0 row(s) in 0.1120 seconds
hbase(main):003:0> append 'zxy:t1','r4','f1:name','hyy'
0 row(s) in 0.0220 seconds
hbase(main):004:0> scan 'zxy:t1'
ROW COLUMN+CELL
r1 column=f1:id, timestamp=1627714724257, value=001
r1 column=f1:name, timestamp=1627714469210, value=zxy
r2 column=f1:id, timestamp=1627714739647, value=002
r2 column=f1:name, timestamp=1627714754108, value=bx
r3 column=f1:id, timestamp=1627714768018, value=003
r3 column=f1:name, timestamp=1627714778121, value=zhg
r4 column=f1:id, timestamp=1627716660482, value=004
r4 column=f1:name, timestamp=1627716670546, value=hyy
hive更新到数据
hive (zxy)> select * from t1;
OK
r1 1 zxy
r2 2 bx
r3 3 zhg
r4 4 hyy
3 Hive添加数据
hive添加数据不能直接通过load添加数据,所以这里选择使用中间表来导入数据
- user.txt
r5 5 tzk
r6 6 fyj
- 创建中间表
hive (zxy)> create table if not exists t2 (uid string,id int,name string) row format delimited fields terminated by ' '
> ;
OK
Time taken: 0.283 seconds
- 导入数据
hive (zxy)> load data local inpath '/data/data/user.txt' into table t2;
Loading data to table zxy.t2
Table zxy.t2 stats: [numFiles=1, totalSize=18]
OK
- 查询导入中间表数据
hive (zxy)> insert into table t1 select * from t2;
Query ID = root_20210731154037_e8019cc0-38bb-42fc-9674-a9de2be9dba6
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1627713883513_0001, Tracking URL = http://hadoop:8088/proxy/application_1627713883513_0001/
Kill Command = /data/apps/hadoop-2.8.1/bin/hadoop job -kill job_1627713883513_0001
Hadoop job information for Stage-0: number of mappers: 1; number of reducers: 0
2021-07-31 15:41:23,373 Stage-0 map = 0%, reduce = 0%
2021-07-31 15:41:34,585 Stage-0 map = 100%, reduce = 0%, Cumulative CPU 3.45 sec
MapReduce Total cumulative CPU time: 3 seconds 450 msec
Ended Job = job_1627713883513_0001
MapReduce Jobs Launched:
Stage-Stage-0: Map: 1 Cumulative CPU: 3.45 sec HDFS Read: 3659 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 3 seconds 450 msec
OK
Time taken: 60.406 seconds
Hive端查询数据
hive (zxy)> select * from t1;
OK
r1 1 zxy
r2 2 bx
r3 3 zhg
r4 4 hyy
r5 5 tzk
r6 6 fyj
Time taken: 0.335 seconds, Fetched: 6 row(s)
hive (zxy)>
Hbase端查询到数据
hbase(main):001:0> scan 'zxy:t1'
ROW COLUMN+CELL
r1 column=f1:id, timestamp=1627714724257, value=001
r1 column=f1:name, timestamp=1627714469210, value=zxy
r2 column=f1:id, timestamp=1627714739647, value=002
r2 column=f1:name, timestamp=1627714754108, value=bx
r3 column=f1:id, timestamp=1627714768018, value=003
r3 column=f1:name, timestamp=1627714778121, value=zhg
r4 column=f1:id, timestamp=1627716660482, value=004
r4 column=f1:name, timestamp=1627716670546, value=hyy
r5 column=f1:id, timestamp=1627717294053, value=5
r5 column=f1:name, timestamp=1627717294053, value=tzk
r6 column=f1:id, timestamp=1627717294053, value=6
r6 column=f1:name, timestamp=1627717294053, value=fyj
6 row(s) in 0.4660 seconds
三 Hive2ClickHouse
1 pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.zxy</groupId>
<artifactId>hive2ch</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<maven.compiler.source>8</maven.compiler.source>
<maven.compiler.target>8</maven.compiler.target>
<scala.version>2.11.12</scala.version>
<play-json.version>2.3.9</play-json.version>
<maven-scala-plugin.version>2.10.1</maven-scala-plugin.version>
<scala-maven-plugin.version>3.2.0</scala-maven-plugin.version>
<maven-assembly-plugin.version>2.6</maven-assembly-plugin.version>
<spark.version>2.4.5</spark.version>
<scope.type>compile</scope.type>
<json.version>1.2.3</json.version>
<!--compile provided-->
</properties>
<dependencies>
<!--json 包-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>${json.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
<scope>${scope.type}</scope>
<exclusions>
<exclusion>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>com.google.guava</groupId>
<artifactId>guava</artifactId>
<version>15.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.47</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.17</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>commons-codec</groupId>
<artifactId>commons-codec</artifactId>
<version>1.6</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-reflect</artifactId>
<version>${scala.version}</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>com.github.scopt</groupId>
<artifactId>scopt_2.11</artifactId>
<version>4.0.0-RC2</version>
</dependency>
<dependency>
<groupId>org.apache.hudi</groupId>
<artifactId>hudi-spark-bundle_2.11</artifactId>
<version>0.5.2-incubating</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-avro_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>com.hankcs</groupId>
<artifactId>hanlp</artifactId>
<version>portable-1.7.8</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
<scope>${scope.type}</scope>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-jdbc</artifactId>
<version>1.2.1</version>
<scope>${scope.type}</scope>
<exclusions>
<exclusion>
<groupId>javax.mail</groupId>
<artifactId>mail</artifactId>
</exclusion>
<exclusion>
<groupId>org.eclipse.jetty.aggregate</groupId>
<artifactId>*</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>ru.yandex.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.2.4</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
<scope>compile</scope>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-hbase-handler</artifactId>
<version>1.2.1</version>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-server</artifactId>
<version>1.2.0</version>
</dependency>
</dependencies>
<repositories>
<repository>
<id>alimaven</id>
<url>http://maven.aliyun.com/nexus/content/groups/public/</url>
<releases>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>
<build>
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>${maven-assembly-plugin.version}</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>${scala-maven-plugin.version}</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-archetype-plugin</artifactId>
<version>2.2</version>
</plugin>
</plugins>
</build>
</project>
tips:
依赖中要含有这两个依赖,否则会报如下问题:
Exception in thread “main” java.lang.RuntimeException: org.apache.hadoop.hive.ql.metadata.HiveException: Error in loading storage handler.org.apache.hadoop.hive.hbase.HBaseStorageHandler
<dependency> <groupId>org.apache.hive</groupId> <artifactId>hive-hbase-handler</artifactId> <version>1.2.1</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.2.0</version> </dependency>
1 Config
package com.zxy.bigdata.hive2CH.conf
import org.slf4j.LoggerFactory
import scopt.OptionParser
/**
* 配置类
*/
case class Config(
env:String = "",
username:String = "",
password:String = "",
url:String = "",
cluster:String = "",
stateDate:String = "",
endDate:String = "",
proxyUser:String = "root",
topK:Int = 25
)
object Config {
private val logger = LoggerFactory.getLogger(Config.getClass.getSimpleName)
/**
* 解析参数
*/
def parseConfig(obj:Object, args: Array[String]):Config = {
//1. 程序名称
val pargramName = obj.getClass.getSimpleName.replace("$", "")
//2. 类似于getopts
val parser = new OptionParser[Config]("spark sql " + pargramName) {
head(pargramName, "v1.0") // 抬头
// 必填
opt[String]('e', "env").required().action((x, config) => config.copy(env = x)).text("dev or prod")
opt[String]('x', "proxyUser").required().action((x, config) => config.copy(proxyUser = x)).text("proxy username")
pargramName match {
case "Hive2Clickhouse" => {
logger.info("Hive2Clickhouse")
opt[String]('n', "username").action((x, config) => config.copy(username = x)).text("username")
opt[String]('p', "password").required().action((x, config) => config.copy(password = x)).text("user pass")
opt[String]('u', "url").required().action((x, config) => config.copy(url = x)).text("url")
opt[String]('c', "cluster").required().action((x, config) => config.copy(cluster = x)).text("cluster name")
}
case _ =>
}
}
parser.parse(args, Config()) match {
case Some(conf) => conf
case None => {
logger.error("cannot parse args")
System.exit(-1)
null
}
}
}
}
2 SparkUtils
package com.zxy.bigdata.hive2CH.utils
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import org.slf4j.LoggerFactory
object SparkUtils {
private val logger = LoggerFactory.getLogger(SparkUtils.getClass.getSimpleName)
def getSparkSession(env:String, appName:String):SparkSession = {
val conf = new SparkConf()
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.set("spark.sql.hive.metastore.version", "1.2.1")
.set("spark.sql.cbo.enabled", "true") // 开启spark sql底层的优化器
.set("spark.hadoop.dfs.client.block.write.replace-datanode-on-failure.enable", "true")
.set("spark.hadoop.dfs.client.block.write.replace-datanode-on-failure.policy", "NEVER")
env match {
case "prod" => {
conf.setAppName(appName + "_" +"prod")
SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
}
case "dev" => {
conf.setMaster("local[*]").setAppName(appName + "_" +"dev").set("spark.sql.hive.metastore.jars", "maven")
SparkSession.builder().config(conf).enableHiveSupport().getOrCreate()
}
case _ => {
logger.error("not match env exist")
System.exit(-1)
null
}
}
}
}
3 ClickHouseUtils
package com.zxy.bigdata.hive2CH.utils
import ru.yandex.clickhouse.ClickHouseDataSource
import ru.yandex.clickhouse.settings.ClickHouseProperties
/**
* ClickHouse DataSource
*/
object ClickHouseUtils {
/**
* 获取连接到clickhouse的数据源对象
*/
def getDataSource(user:String,password:String,url:String):ClickHouseDataSource = {
Class.forName("ru.yandex.clickhouse.ClickHouseDriver")
val properties = new ClickHouseProperties()
properties.setUser(user)
properties.setPassword(password)
val dataSource = new ClickHouseDataSource(url,properties)
dataSource
}
/**
* df
* uid string gender string,...
* ch
* uid String gender String,...
*/
def dfTypeName2CH(dfCol:String) = {
dfCol.split(",").map(line => {
val fields: Array[String] = line.split(" ")
val fType: String = dfType2CHType(fields(1))
val fName: String = fields(0)
fName + " " + fType
}).mkString(",")
}
/**
* 将df的type转为ch的type
*/
def dfType2CHType(fieldType: String):String = {
fieldType.toLowerCase() match {
case "string" => "String"
case "integer" => "Int32"
case "long" => "Int64"
case "float" => "Float32"
case "double" => "Float64"
case "date" => "Date"
case "timestamp" => "Datetime"
case _ => "String"
}
}
}
4 TableUtils
package com.zxy.bigdata.hive2CH.utils
import java.sql.PreparedStatement
import com.zxy.bigdata.hive2CH.conf.Config
import org.apache.spark.sql.types.{IntegerType, LongType, StringType}
import org.apache.spark.sql.{DataFrame, Row}
import org.slf4j.LoggerFactory
import ru.yandex.clickhouse.{ClickHouseConnection, ClickHouseDataSource}
/**
* 生成clickhouse数据类
*/
object TableUtils {
/**
* 向clickhouse插入数据
*/
def insertBaseFeatureTable(partition:Iterator[Row],insertSql:String,params:Config): Unit ={
var batchCount = 0 //记录批量的个数
val batchSize = 2000 //极限个数
var lastBatchTime = System.currentTimeMillis()
//1.获取数据源
val dataSource: ClickHouseDataSource = ClickHouseUtils.getDataSource(params.username,params.password,params.url)
val connection: ClickHouseConnection = dataSource.getConnection
val ps: PreparedStatement = connection.prepareStatement(insertSql)
//2.填充占位符
partition.foreach(row => {
var index = 1
row.schema.fields.foreach(field => {
field.dataType match {
case StringType => ps.setString(index,row.getAs[String](field.name))
case LongType => ps.setLong(index,row.getAs[Long](field.name))
case IntegerType => ps.setInt(index,row.getAs[Int](field.name))
case _ => logger.error(s"type is err,${field.dataType}")
}
index += 1
})
//3.添加批处理集合
ps.addBatch()
batchCount += 1
//控制batch缓存过大,过大就执行
if (batchCount >= batchSize || lastBatchTime < System.currentTimeMillis() - 3000){
lastBatchTime = System.currentTimeMillis()
ps.executeBatch() //执行批缓存中的所有数据
logger.warn(s"send data to clickhouse,batchNum:${batchCount},batchTime:${System.currentTimeMillis() - lastBatchTime}")
batchCount = 0
}
})
//无论数据大小,都执行
ps.executeBatch()
logger.warn(s"send data to clickhouse,batchNum:${batchCount},batchTime:${System.currentTimeMillis() - lastBatchTime}")
ps.close()
connection.close()
}
private val logger = LoggerFactory.getLogger(TableUtils.getClass.getSimpleName)
val USER_PROFILE_CLICKHOUSE_DATABASE = "zxy"
val USER_PROFILE_CLICKHOUSE_TABLE = "t1"
/**
* 根据df生成clickhoust的表,返回df的各个列的名字和占位符,用于写数据
*/
def getClickHouseProfileBaseTable(baseFeatureDF:DataFrame,params:Config):(String,String) = {
/*
* baseFeatureDF的schema的如下:
* fieldName = uid, gender, age, region, email_suffix, model
* fieldType = uid string, gender string, age string, region string, email_suffix string, model string
* pl = ?, ?, ?, ?, ?, ?
*/
/**
* 1.提取数据
*/
val (fieldName,fieldType,pl) = baseFeatureDF.schema.fields.foldLeft("", "", "")(
(z, f) => {
if (z._1.nonEmpty && z._2.nonEmpty && z._3.nonEmpty) {
//非空即表示不是第一次的时候进行拼接
(z._1 + "," + f.name, z._2 + "," + f.name + " " + f.dataType.simpleString, z._3 + ",?")
} else {
(f.name, f.name + " " + f.dataType.simpleString, "?")
}
}
)
("","")
/**
* 2.将spark的表达式转换为clickhouse的表达式
*/
val chCol: String = ClickHouseUtils.dfTypeName2CH(fieldType)
/**
* 3.获取到连接ch的cluster
*/
val cluster: String = params.cluster
/**
* 4.建库
*/
val createDatabaseSql =
s"create database if not exists ${USER_PROFILE_CLICKHOUSE_DATABASE}";
/**
* 5.在clickhouse中建表
*/
val chTableSql =
s"""
|create table ${USER_PROFILE_CLICKHOUSE_DATABASE}.${USER_PROFILE_CLICKHOUSE_TABLE}(${chCol})
|ENGINE = MergeTree()
|ORDER BY(uid)
|""".stripMargin
/**
* 6.删表
*/
val dropTableSql = s"drop table if exists ${USER_PROFILE_CLICKHOUSE_DATABASE}.${USER_PROFILE_CLICKHOUSE_TABLE}"
/**
* 7.获取连接到clickhouse
*/
val dataSource: ClickHouseDataSource = ClickHouseUtils.getDataSource(params.username,params.password,params.url)
val connection: ClickHouseConnection = dataSource.getConnection
logger.warn(createDatabaseSql)
var ps: PreparedStatement = connection.prepareStatement(createDatabaseSql)
ps.execute()
logger.warn(dropTableSql)
ps = connection.prepareStatement(dropTableSql)
ps.execute()
logger.warn(chTableSql)
ps = connection.prepareStatement(chTableSql)
ps.execute()
ps.close()
connection.close()
logger.info("init success")
(fieldName,pl)
}
}
5 Hive2Clickhouse
package com.zxy.bigdata.hive2CH
import com.zxy.bigdata.hive2CH.conf.Config
import com.zxy.bigdata.hive2CH.utils.{SparkUtils, TableUtils}
import org.apache.log4j.{Level, Logger}
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.slf4j.LoggerFactory
object Hive2Clickhouse {
private val logger = LoggerFactory.getLogger(Hive2Clickhouse.getClass.getSimpleName)
def main(args: Array[String]): Unit = {
Logger.getLogger("org").setLevel(Level.WARN)
//1.解析参数
val params: Config = Config.parseConfig(Hive2Clickhouse,args)
logger.warn("job is running,please wait...")
//2.获取到SparkUtils
val spark: SparkSession = SparkUtils.getSparkSession(params.env,Hive2Clickhouse.getClass.getSimpleName)
import spark.implicits._
//3.如果是本地测试就控制输出
var limitData = ""
if(params.env.trim.equals("dev")){
limitData = "limit 10"
}
//4.zxy.t1数据
val hiveDataSql =
s"""
|select
|uid,
|id,
|name
|from
|zxy.t1 ${limitData}
|""".stripMargin
val hiveDF: DataFrame = spark.sql(hiveDataSql)
hiveDF.show()
//2.6 保存在clickhouse中:1.meta(filedName,pl),2.sql的占位符
val meta = TableUtils.getClickHouseProfileBaseTable(hiveDF,params)
//2.7 插入数据
val insertSql =
s"""
|insert into ${TableUtils.USER_PROFILE_CLICKHOUSE_DATABASE}.${TableUtils.USER_PROFILE_CLICKHOUSE_TABLE}(${meta._1}) values(${meta._2})
|""".stripMargin
logger.warn(insertSql)
hiveDF.foreachPartition(partition => {
TableUtils.insertBaseFeatureTable(partition,insertSql,params)
})
hiveDF.unpersist()
spark.stop()
logger.info("job has successed")
}
}
tips:
resources目录下需要添加:
core-site.xml
hive-site.xml
yarn-site.xml
四 提交测试
1 Spark-submit
sh /opt/apps/spark-2.4.5/bin/spark-submit \
--jars /opt/apps/hive-1.2.1/auxlib/hudi-spark-bundle_2.11-0.5.2-incubating.jar \
--conf spark.executor.heartbeatInterval=120s \
--conf spark.network.timeout=600s \
--conf spark.sql.catalogImplementation=hive \
--conf spark.sql.shuffle.partitions=20 \
--conf spark.yarn.submit.waitAppCompletion=true \
--conf spark.sql.hive.convertMetastoreParquet=false \
--name hbase_hive_clickhouse \
--master yarn \
--deploy-mode client \
--driver-memory 1G \
--executor-memory 3G \
--num-executors 1 \
--class com.zxy.bigdata.hive2CH.Hive2Clickhouse \
/data/jars/hive2ch.jar \
-e prod -u jdbc:clickhouse://192.168.130.111:8321 -n zxy-insert -p zxy-0613 -x root -c 1
2 测试运行
[root@hadoop jars]# sh /opt/apps/spark-2.4.5/bin/spark-submit \
> --jars /opt/apps/hive-1.2.1/auxlib/hudi-spark-bundle_2.11-0.5.2-incubating.jar \
> --conf spark.executor.heartbeatInterval=120s \
> --conf spark.network.timeout=600s \
> --conf spark.sql.catalogImplementation=hive \
> --conf spark.sql.shuffle.partitions=20 \
> --conf spark.yarn.submit.waitAppCompletion=true \
> --conf spark.sql.hive.convertMetastoreParquet=false \
> --name hbase_hive_clickhouse \
> --master yarn \
> --deploy-mode client \
> --driver-memory 1G \
> --executor-memory 3G \
> --num-executors 1 \
> --class com.zxy.bigdata.hive2CH.Hive2Clickhouse \
> /data/jars/hive2ch.jar \
> -e prod -u jdbc:clickhouse://192.168.130.111:8321 -n zxy-insert -p zxy-0613 -x root -c 1
21/07/31 17:41:46 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
21/07/31 17:41:47 INFO Config$: Hive2Clickhouse
21/07/31 17:41:47 WARN Hive2Clickhouse$: job is running,please wait...
21/07/31 17:41:51 WARN yarn.Client: Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
21/07/31 17:42:25 INFO hive.metastore: Trying to connect to metastore with URI thrift://192.168.130.111:9083
21/07/31 17:42:25 INFO hive.metastore: Connected to metastore.
21/07/31 17:42:37 WARN mapreduce.TableInputFormatBase: You are using an HTable instance that relies on an HBase-managed Connection. This is usually due to directly creating an HTable, which is deprecated. Instead, you should create a Connection object and then request a Table instance from it. If you don't need the Table instance for your own use, you should instead use the TableInputFormatBase.initalizeTable method directly.
+---+---+----+
|uid| id|name|
+---+---+----+
| r1| 1| zxy|
| r2| 2| bx|
| r3| 3| zhg|
| r4| 4| hyy|
| r5| 5| tzk|
| r6| 6| fyj|
+---+---+----+
21/07/31 17:43:03 INFO clickhouse.ClickHouseDriver: Driver registered
21/07/31 17:43:04 WARN TableUtils$: create database if not exists zxy
21/07/31 17:43:04 WARN TableUtils$: drop table if exists zxy.t1
21/07/31 17:43:04 WARN TableUtils$:
create table zxy.t1(uid String,id String,name String)
ENGINE = MergeTree()
ORDER BY(uid)
21/07/31 17:43:04 INFO TableUtils$: init success
21/07/31 17:43:04 WARN Hive2Clickhouse$:
insert into zxy.t1(uid,id,name) values(?,?,?)
21/07/31 17:43:04 WARN mapreduce.TableInputFormatBase: You are using an HTable instance that relies on an HBase-managed Connection. This is usually due to directly creating an HTable, which is deprecated. Instead, you should create a Connection object and then request a Table instance from it. If you don't need the Table instance for your own use, you should instead use the TableInputFormatBase.initalizeTable method directly.
21/07/31 17:43:10 INFO Hive2Clickhouse$: job has successed
3 查看ClickHouse表
clickhouse-client --host 192.168.130.111 --port 9999 --password qwert
[root@hadoop jars]# clickhouse-client --host 192.168.130.111 --port 9999 --password qwert
ClickHouse client version 20.3.12.112.
Connecting to 192.168.130.111:9999 as user default.
Connected to ClickHouse server version 20.3.12 revision 54433.
hadoop :) show databases;
SHOW DATABASES
┌─name─────┐
│ app_news │
│ default │
│ system │
│ zxy │
└──────────┘
4 rows in set. Elapsed: 0.179 sec.
hadoop :) use zxy;
USE zxy
Ok.
0 rows in set. Elapsed: 0.015 sec.
hadoop :) show tables;
SHOW TABLES
┌─name─┐
│ t1 │
└──────┘
1 rows in set. Elapsed: 1.279 sec.
hadoop :) select * from t1;
SELECT *
FROM t1
┌─uid─┬─id─┬─name─┐
│ r1 │ 1 │ zxy │
│ r2 │ 2 │ bx │
│ r3 │ 3 │ zhg │
│ r4 │ 4 │ hyy │
│ r5 │ 5 │ tzk │
│ r6 │ 6 │ fyj │
└─────┴────┴──────┘
6 rows in set. Elapsed: 0.095 sec.
hadoop :)