opencv3视频透视变换【C++】
上一篇博客通过用鼠标选择特征点,完成透视变换,实现了视频视角的校正。
实现目标
在透视变换的基础上,利用帧差法检测运动物体,并用矩形框出。
程序
#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
Mat MoveDetect(Mat temp, Mat frame);
void onm ouse(int event, int x, int y, int flags, void *utsc);
Point2f srcTri[4], dstTri[4];
int clickTimes = 0;
Mat imageWarp;
Mat frame;
int main()
{
VideoCapture video("H:\\test.mp4");
if (!video.isOpened())
return -1;
video.set(CV_CAP_PROP_FRAME_WIDTH, 1280);
video.set(CV_CAP_PROP_FRAME_HEIGHT, 720);
while (1)
{
int frameCount = video.get(CV_CAP_PROP_FRAME_COUNT);//获取帧数
double FPS = video.get(CV_CAP_PROP_FPS);//获取FPS
Mat temp;//存储前一帧图像
Mat result;//存储结果图像
for (int i = 0; i < frameCount; i++)
{
video.read(frame);
if (frame.empty())//异常检测
{
cout << "frame is empty!" << endl;
break;
}
if (i == 0)//如果为第一帧(temp为空)
{
result = MoveDetect(frame, frame);
}
else//若不是第一帧(temp有值)
{
result = MoveDetect(temp, frame);
}
temp = frame.clone();
imshow("result", result);
setMouseCallback("Source Image", onm ouse);
imshow("Source Image", frame);
}
}
return 0;
}
void onm ouse(int event, int x, int y, int flags, void *utsc)
{
if (event == CV_EVENT_LBUTTONUP)//响应鼠标左键抬起事件
{
circle(frame, Point(x, y), 2.5, Scalar(0, 0, 255), 2.5);//标记选中点
imshow("Source Image", frame);
srcTri[clickTimes].x = x;
srcTri[clickTimes].y = y;
cout << "x: " << x << " y: " << y << endl;
clickTimes++;
}
if (clickTimes == 4)
{
//注意点的顺序:左上,右上,左下,右下
dstTri[0].x = 0;
dstTri[0].y = 0;
dstTri[1].x = frame.rows - 1;
dstTri[1].y = 0;
dstTri[2].x = 0;
dstTri[2].y = frame.cols - 161;
dstTri[3].x = frame.rows - 1;
dstTri[3].y = frame.cols - 161;
Mat transform = Mat::zeros(3, 3, CV_32FC1);//透视变换矩阵
transform = getPerspectiveTransform(srcTri, dstTri);//获取透视变换矩阵
warpPerspective(frame, imageWarp, transform, Size(frame.rows, frame.cols - 160));//透视变换
imshow("After WarpPerspecttive", imageWarp);
}
}
Mat MoveDetect(Mat temp, Mat frame)
{
Mat result = frame.clone();
//1.将background和frame转为灰度图
Mat gray1, gray2;
cvtColor(temp, gray1, CV_BGR2GRAY);
cvtColor(frame, gray2, CV_BGR2GRAY);
//2.将background和frame做差
Mat diff;
absdiff(gray1, gray2, diff);
// imshow("2_diff", diff);
//3.对差值图diff_thresh进行阈值化处理
Mat diff_thresh;
threshold(diff, diff_thresh, 50, 255, CV_THRESH_BINARY);
// imshow("3_diff_thresh", diff_thresh);
//4.腐蚀
Mat kernel_erode = getStructuringElement(MORPH_RECT, Size(3, 3));
Mat kernel_dilate = getStructuringElement(MORPH_RECT, Size(5, 5));
erode(diff_thresh, diff_thresh, kernel_erode);
// imshow("4_erode", diff_thresh);
//5.膨胀
dilate(diff_thresh, diff_thresh, kernel_dilate);
// imshow("5_dilate", diff_thresh);
//6.查找轮廓并绘制轮廓
vector<vector<Point> > contours;
findContours(diff_thresh, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_NONE);
// drawContours(result, contours, -1, Scalar(0, 0, 255), 2);//在result上绘制轮廓
//7.查找正外接矩形
vector<Rect> boundRect(contours.size());
for (int i = 0; i < contours.size(); i++)
{
boundRect[i] = boundingRect(contours[i]);
if (contours[i].size() > 500)//过滤掉较小的矩形
rectangle(result, boundRect[i], Scalar(0, 255, 0), 2);//在result上绘制正外接矩形
}
return result;
}