(一)简单阈值
简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了。函数为cv2.threshold()
这个函数有四个参数:
第一个原图像,第二个进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有:
cv2.THRESH_BINARY(黑白二值)
cv2.THRESH_BINARY_INV(黑白二值反转)
cv2.THRESH_TRUNC (得到的图像为多像素值)
cv2.THRESH_TOZERO
cv2.THRESH_TOZERO_INV
该函数有两个返回值,第一个retVal(得到的阈值值(在后面一个方法中会用到)),第二个就是阈值化后的图像。
(二)自适应阈值:
前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。使用的函数为:cv2.adaptiveThreshold()
该函数需要填6个参数:
第一个原始图像
第二个像素值上限
第三个自适应方法Adaptive Method:
cv2.ADAPTIVE_THRESH_MEAN_C :领域内均值
cv2.ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权重为一个高斯窗口
第四个值的赋值方法:只有cv2.THRESH_BINARY 和cv2.THRESH_BINARY_INV
第五个Block size:规定领域大小(一个正方形的领域)
第六个常数C,阈值等于均值或者加权值减去这个常数(为0相当于阈值 就是求得领域内均值或者加权值)
这种方法理论上得到的效果更好,相当于在动态自适应的调整属于自己像素点的阈值,而不是整幅图像都用一个阈值。