题目
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAiIAAABzCAYAAACl+WlRAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACESSURBVHhe7Z2Nbiw5jqxn7osP5sn3dmA7gNhokqKUWZXpY36AkBJ/gqTK4014fdz//p+/+NcwDMMwDMMD/L+/n8MwDMMwDF9nXkSGYRiGYXiMeREZhmEYhuEx5kVkGIZhGIbH+CNeRP7973//vfu/ZPYV38o7rfNJ3tiTstPflVmi3F29O3q9MkOHO/Q7Gp+e4w5WPXZn+PasqLdaHbpxIIvd0diBc0TrCaK6nV48ptt/FrfK7+rfAWqtVsar/tVM1aijbXsefZGe+lwj8ymnvohuzatAO8NrfrKPu9jpkbHVHYDOPVR1V/oKNVSvs/8UnRpVzNV8B7G73HVHWZ+r/tW/M+sd7PRGYOsSzdXZ30mm+6l6K6K6nV528tTe2UdUeQrsbuugtXd6cV73IuLtrGzce1wU42QxWTzp6HXw+N38E05n+6l05ul+DrA7V++SMf4kHY0u0Nql00unx2iuiEynU+OUrJcK70X7+2SvEZ3+O/10+maMP0lH44RM91P1KqpeHI9jbhRLNEfj9Un8TFzfc7N9RjdmRaaRvohEoqtGrhINW9ncl9nByoZ9hucpnbwqJqOqqaj2KsfnXe27ZDmwg12fwrgOqrUzh8ZG9eCL9NwW5Trd+Kwf7+EK0UxdTnon8Ee1q36u9HrCTr1sTmW3d9Vc5a56zfy7fVfxjPOYVe9dqhlOa2ivXY3oDpAb9eG23V6jWoQ6HpP1UPXivog7Yip/+SKirk4jV4lqXLF18dxMa1Vjt4crPYNu3yDy0aa+SsNBLMm0fQ9O62VEGl4jIurBtZjr+sBjnZWfsAbw2jx3tXbY6a+K2/FzH+VUOqsad7JTa3eODp6/0oN/Raefbt9aL+uzq9Ul0zut43ldnSgPdHrbPRPWAFl8lQu7+zu5ZOUniFuR6bR+WbXbyB2glq7MRqJztjK6syGu0qno5p3qV1ATT11XwX1Edwdtteu9Vb4TXC8DMbp2WMWjh2itfAB76uOpvrfwtr4+1Qt0qc29L2f3a+kToIfVUqK5sFY+gD318FTfN/h2vQ5+vxFR33p/eq+K2rv3jRgunvnknuBc9e/xFdBZrYz0RaRK+iRR45Etw+P8DPiB8JL1XNmA6uyAPNWJgH9HvxuLOC49/3R27+sq2efH+2Qveq5sUf84w05fVvMuWMuX430+SedesjlWQDtb36JbizPuLOAz6bmyIZ97gjO1uf8kd9XwOe4g64t3Q3Dm4plPt3ufnJ8+xiqwc/mZtg5R/age+9lZzvKXVZG00/wVolorG/f6zNjRjnykU4uohmpq7qpeh25+FOd97fbhOVWNyrfDKkf92Eeov4rVOh7rvgiNiXAdhb4q5pRMc2XHcwXzXUs1vEZkIyfxIPNHMKdC9Trxzk4/oJoxo5uT9b/KrfTpO+m7QvWy/Sk7Goh1NLfq7bTXKo++KKaT53tS+StdpRsHXvd3RNC8rsxWgeF5Abq/G2p7LbcTnjED93jq+YRVPu8NKzr/NND37n0hXldFN87xPNfw+9bPgHuPWXGSc5VsTrc76DPz3U3VRwXzouVE/upMW5fufZ1+/t6X7oHr4kwb9x7zDbTHq6D/XT3e0519ROj9cs/ziihvJ7eaDb5Iq6sf8boXEf2QeRmR7ROsPgDQiamI8nE+/RA7/cDPFZ1/Elfv/ypZbfSlq7IR/Qx03wVazFPdDsztshtPTnrrctLPCvSarW+CelfmW/Ue+TMbQT/sSfc7qPbToI8rdxzR1eM9RIvoHet+BTQ87yS3AjHaawZn4sq49CKyEv9JYI7sA1jN6LlZfFWj+8Eq3borsp5O8Vm0z8q3YifWQa6uu0FfviK7s+oFOYiJcp/G+8pmeWIG1Mv6qUCP2foW3XutWPXufsZENmXVC3K8/6vcrQfuuOOroL4v5+S+dQ8f1wrXuQPo6cp4zU9ETi+hk7P6EKLaOMOuuVFclUuo43FOVHMF4z+dE6EarqezZPcT+SJ2YiOQF627QY8Z9Hld9nIy42neHfGRjf04jHUfzrp+Muh/dac7M37jXipt+qLPmJ8l1mpmZzd+h9274gy7ed/kjvvmclzzRPsuXvOXVbNLjuxu28kl9FUxTlR3RaW9U/sK3ucbeuqi/XCOTn87c0Q1lEzH8zzObVEMYE34spwsd5eOTtYDwXkF4zMtt4PIRirfXaDGiqiHrDe3f2IGaqp2p04U47ZMB3YAX5ZT5Ub2jFW8+ne1T0ANJ6vp/XivGa7HWNgzTbeDqAZjoviMTmzUx1aNvwJ7kR+k2zDiSGfYzOd21c3o9OdU9cmJ7id4a0+r+3MYn+Uq0cyeF+kwr8ohUa7mgSwm0vXYHVb5WT+7ZP1f4U6tjM79qB9nsMpR7pwh66cC8VWe96exjMtiIt3qvKIbjziyo39CZyb2E9lpi/KAx4BMxzV2zu6rWMVGdVa43mt+IjIMwzAMw+/jdf9qZhiGYRiG38O8iAzDMAzD8BjzIjIMwzAMw2PMi8gwDMMwDI8xLyLDMAzDMDzGvIgMwzAMw/AY8yIyDMMwDMNjzIvIMAzDMAyPMS8iwzAMwzA8xqtfRDp/KpZksTsanwI9rFZEZj9hR8tjO7mnM0T+T9ZTdmKVbt4dPYLTPr/JXbMS5HF9gq7uKq7yZ77dmXbio9hV/l19nrJb56Rf+FbrrWS90X7SO2eOck/0rvKaFxG9GK7KDnSvZPYraP3VisBf0s9Wh6gOl+JngjqZ75RM7+465Nv17gC9cSlqd99PQfs++frS+X1l//uAz/HcKOaUq/+7yXpSu/ueIOtF7e77JlntnZ70a8rXTwb9R/fAzyxa3dmjXK47efV/awbDdi4KMf4kHY1TutqIWxHpqH5nTyIbyOyg0uz4/En87ET+KsfreGyWC3sX1+sS9VH1576Mbty3ifqq5nVO51rViM67VH1VesxjD1Vv7su4Gge74z14rp4z3TvI6kd4rOdUGvCtWNV/Cu+dfVbzgpU/Q/M6+zt41YsIhluh7VbxemHKrZfX/DBWce6PetaYbE9oc52ITJNQR5+k0o+0gOYD1wSRDdxRT8nqKN3+1OZ+njtaOHdxrTvRPrI63Xl28rto7k5N0K2LOCWqF+1dP7ODKLbLKm9VM6q9yrmTrH4EfBnM8ZiuNlj5I7Tebu4O2pvP6OzM7Lg2cr12tO+g2lHej/+JCMiGvHJxHU76y4h0sv6zfZcop9LEGWR16Aeel2mSyJ7FktN6mpfR6aVrA5l9hzs0dvB6V2arYuDrUtXp9gtWNas8+qJ9VjOz79DR8Bicwad6ukrWw6o3zgV8Xp4jDc3LqOo6XiOqeQfU9af6MuDvojpZjZ3aisdGua/4HRE0Fq2VD2DPofBU31tAX6v1drTHJ+//Sj3E68psd+B94Zyt34zff7ZAdFew0U9wju6WZ9XVlRHVcNwf1c7Wp1j1DKJ+onUn0NPeVB/2rJ7mVXERiF+tN4P+dH7uV3fA2VbraV7xIuIXoufKph8MwRn27gfVgXq+Tn3VukKmo2fs/c4iIh0n0vrE/ZPTevT7WvnuBL1xRec38caeAPrSzwb7rFe/2yq2i9fmWfcZ7Ic9+PmTVL1pH9qPnxXOu7M0L9JU4Nc8EOVpHPcO/TurA3thjvd2B9Tt9vRWOnf1I35HZNViNhygr4o55VSzm4c4wP4zXCvSpy3zKe4HVUykSVZ13VfFk46vigG7cUrH5vp4ZjCvisnwPu7G51IqH+nkr+aO8ju5zNMedmtpvOu5ruZ6DJ4ZqrFLlRv1E+07qNbdaD8rqlj6Ono7NTvcreeovtfKatOOZ4XnMn6VG9XsEPX7qr8jgua49Ez8UnCmjXuPeQO7PekcOj/vw1cHxEEziletyA+iGO2Te553gF4nT/W57+Q5yOEMTqSnteiPbCv07nRPaNOV2bk+Cebq1ojuYCdfZ9K1gjFVXnSOlqP949n9nDO0ju4JbboyO5eS2VdoHnMj25Pg7nn/3O98HjuxbwO98zPQPcF5NR8/R18KNKijPs/hupPX/h2Rykb0Qk4vR7W/CetG9U9nqUANaHqtK2ifn+jZuaNedNe08Y4c1uLKbHeT9VOBHJ/xhJ3aq9g7+lE69e74TFzjDs0d7poDrO5LV2Sj/SnQP2fQ/RWuzNeJP9F1kM9Zde/AfrXWXffqdPp6zYsIL0FXZHdWQyKn+gCfQmf6dG86P57ZncG+Wk5kU1jPZ3Sbx/HsnNYDmb3KiWwR3bgu1QyfxmtXNas+acfTNbK8E1S/o4uYaJ2C3LtmIZnmlT4jUIOLZz7d9zSr2dHnzmeh83VzvonPsupR/Tv38AZe9f+aqb7Q6PPLxRkL/pPL/0kfVsbq3qI7i3JgXy2H9tP73+WkXhYLG6HmXXT7ioh6Jas+O3U7oAZXRVSv6v8qmTbvpVMXMdHaBTlVPyuyu63mYM07gV5V8y2gP87/dL/aR9bL1f5Yg2R74Odv0K3ZuatX/b9mqg/OPxSF9iiGulVuVfcqq/p34/Wy2e6cWWv5nN4PoE2JbJEeoK1bD2fXZpzCPNc8RWt4LQCb21mbfUSL/gjYo1o7sC9dEW5nf1E8bNp7luurA2NZo5t3AuvoPqunsT4vgM3t1MIzW/Q7HrOCsVEfRGPeAGdDP9wT9tm1XwWaXBGsexc6g+6BnqO6sEXrW6AfrohX/KsZXIi2oRfk7Wks47KYSLc6d2FdUOVH9VYgPtOv8pl3tV4XzdOagH1E/XgsyOxE9YDHql99mW5m79LJr2Ku1geRxh26J6AuOL2Tqu+VD2SawH2RHmNBpgW75roONTK/Uvm6RPWrM4ANrGrf0d8OnXpZ78x1jcq+wmuc4HVPiDTUFs0W1ax6cT3iuhmZ7i6v/suqwzAMwzD82bzqd0SGYRiGYfhdzIvIMAzDMAyPMS8iwzAMwzA8xryIDMMwDMPwGPMiMgzDMAzDY8yLyDAMwzAMjzEvIsMwDMMwPMa8iAzDMAzD8BjzIjIMwzAMw2O87kUk+nOy1Z+YJR7TyQFZ3Cq/q+9EeR2t0z6VO3uOuKNHcNrnt7lrXoI8rjtY6VT+zLfb2058FLvKv6vPU67OByoN+FbrabIeaD/pkbNFuSd6d3Pal8d0Z8niVvldfSfK62id9vnH/kQEf7l+91I6Fx2hedjrukKWf1X3k2Szq919Pwntvfoay9A78AU9LgU+x3OjmJP+lExb7e57gqwXtbvvW2R1d/rRrwtfPwH0Gc3LzyVa3RmjXK6fQHY3YNe+QvOw13WFLH9H91UvImg8+8LjhXFleIyfQfTh47z6ogeq5RoEOh2tFXf0qauyk8yf2QnO7Evnpz3y/QlgFr+LFbwDXxnwRTW6uQp0uKIzwJ55qk975LuK1nTYHxfRHO2F9sh3J6yjPTmRX/vugPhsvYVVT9m8sEdrB805yd8FM2Y19B6yuwAe42eAGnoGOHfmUy3XIHfd1ZU+yWv+o3fRZXFAb9Ft20MHtQh1PCbroerFfaBrA7BnaA0l0iFZHaXbn9rcz3NHC+curnU32ktWqzvTTn4XzV3VxFmJ8qJ9pBPZQRTbZZW3qhnVXuXcSVbfgT2D8R7T0SUrvxP1s5MfoT1E+srObI5rI9drR/sVrguy3Cw2que2nZ5AVItQx2OyHqpe3Ae6NgB7htZQ/qH9l+Gfyg/gQ7LxqL0odudMWANk8VUu7O5f5XZtCvxkt9aKTi9dG8jsO9yhsYvXvDJfFQNfl6pOt1+gvmif5VaaXToaHoMz+FRPV8l6qHrjTMBn5TnK17yMrGZE1eMJ1POn+jLg76I6WY2d2sqVWJxBlB/F7pwJa4AsvsqF3f2r3K5NgZ/s1AKv/h2RamiiwxPk0Z4NrnaNr0AMF898ck9w7vS/QnW6fRLE68psdxDNn63fjn8G2QLRfcFGP8E5ut8o1nF/pJGtT7HqGUT9ROtOoKe9qT4/A0dzspgMxK/WG0AfOif3q1k5w2q9mU5/0T0gj3a9O0XtGl+BGC6e+eSe4Nzpf4XqdPtUfsQvq2ZD+SXizMUzn273y+fl0cdYBXYuP9N2J6d90u9r5bsT3gn79/PbYF+8j7f0iT7086l6gz3zuQbPus+gLrX9/Emq3rQP7cfPCufdWZoXaSrwe57naAz3Dv07q8tJTgTys/5/GnfcSZYLu34NeC19uv3kawd2Lj/TdienfSqv/x0RosPqHvi5S5VHXxTTyfM9iDQjm9PxVTFgN07p2FwfzwzmVTEZ3sen8PlIZleqGPpWs1e1q1zN0zjaVcNtxGPwzFCNXarcqJ9o30G17kb7qaji6OtodetleP5VPaI63Rq041nhuYxf5UY1I7w/PytRvSx3R7di1Q98UUwnz/cg0oxsTseXxbzqJyJokOuT4DKwdM/ziiivm0v4gaxQbe47eQ5ysjuN9LQW/ZFthX6Wuie06crsXG8iugfYun36bFwrGFPlaR94dj+zDK2he0KbrszOpWT2FZrH3Mj2FLh33j33O5/FTmyHT9wHeqSu7gnOqzkQEy0FGtRRn+dwddmJBSc1TtB5ued5RZTXzSWYr5Oj2tx38pQf83dEuh+6XoQvol9Eul8BDc/r5p6g+qe1dG4ADdp0HoW1uDLb3WT9VCDHZzxhV2PV6x09KZ166vfY3Xu9yqrfHVZz64pstD8Bemf/ur/Cldk68Tu6iONMundg72pm3HV/ztW+lG5/qJktovPuzA4Nz+vmnqD6p7V+zIvIDrwMXY5+4BHI0Q8U6J5fNCsdEmmpjWdnpe86SmavciJbRDeuSzXD2+jcN57ee5Z3gupf0b2zJ5Jpst+7QA0unvl035Os5kaPO5+DztbN+QTe86oX9e/M+6eC+X05J187uoePq0OkpTaenZW+6zh/5ItIB1wIL6e6oAzmR3mnmhGssaOZxcJGqHkX3b4iol7Jqs9O3Q6sw1XpRr5VzhUybfZ8UrfK7eghN6LqhzXvBHpVzTeA3jj7071qH1kv3f6oRbI98PM36Nbs3MlToBftb7c35kd5d87LGqeaP+aXVRUfVM+RDnE9xsKeabodRDUYk8V3bKCqB7v7ec70gOY7lY9U2koW1+mtw672N2D/1XzweZ+ruT3W9bWu7h3NjfZqU3btAL4uqhHlVTXgY47HaX9ZzJ1ovQrtxXN47tg95hPs1Mh69j3gObJXaCyoaiiV75So12597zvD9RgLe6bpdhDVYEwW37GBqh7s7uc51fvL+E/rA2SNK7CByE5bOqjFgEzHNXbO7otYxdCPJ/BY9asv083sXTr5VczV+iDSuEP3FNQGp/dS9b7ygUwTqI9aqun6nud+pfJ1iepXZwAbWNW+o78dVvWyvpnn+ZV9hdc4wetWRLFqi2aItKuarkdcNyPTPcV7jXpnP5GdtigPeAzIdFxj5+y+iFUM/XgCj1W/+iLd17yIDMMwDMPw+/i1vyMyDMMwDMPzzIvIMAzDMAyPMS8iwzAMwzA8xryIDMMwDMPwGPMiMgzDMAzDY8yLyDAMwzAMjzEvIsMwDMMwPMa8iAzDMAzD8BjzIjIMwzAMw2O8+kWEfzp2l25eFrdb97TPHa7U8Nxv9Au+VYfcWe/bd5bp79rJad5wL3d/Dsjj+gS7uln8J/q7u9ZO3tV5PnEfp9zRS6Vxov/rfyKCS+NS1O6+PxWfubN+ElH/XCv430wgnq+LRD6uT5Dpfqpel9P6d9/V0/fQhXNHC1+HXAp8judGMSdkOit97aO7nMyndvVFcV12Yt9I1r9/L/sUqJEt59X/9d0MbflKHj+QyO77im7cFaI+I6I+otxuv1dmu5K7Ips/onMnTuRXW2evZHbiGrt4fX8SP3+a3XqIJ5/o81vz6xwrvJ/THj2vc96F+dTyJ/HzDlFup05WM4vJ4hXGdGIrruafktWt7ErWczUPfTu1X/0fvauGJeFQC5v7ee5o4dzFtXbJanV6zfag8jkrP0Fcl47eCTu9RvNn+wj4MzzvSr0dO2wZWkeJtBWNR6yfK6IeI3Y0M3b67PZ1B1mtqocr/Wmu66x0u3URl6G1lY4uWfXNs9vByoZ9hucpkW6Fx+/m3wXrVnMTxrHPbq7OFeU7kf1VLyKrgcE/BoiGatpAZt/hDo0K1ec+qhnF+R5UPmflr7iS2wH6K7x+1BNt6lv1nsV6XqRDW5VHYM+I4oHmaEynXoTHdnOrOPhIt48V1KReVr/b/x2c9MA5OlRzeI0rNbMZSFYnqpnVqnJI5VvhuZlW1l9GptGp9TRVn1XPmc/zMzz3Vb8jguZ0ZbY78EvCOVt/AtEsOO/c6Rvvwr8+dDnsn3fBtSKLVVvm51PXLp3ZCPTpx/OkXoXqV6zi4ONCLNc3YM1vofNxrdD7qRaI9GCjn+Ac1edZdXVFqD6errlC9alTEfWcrYxOHeC9MS+zd+n2+VPxmfye/Ky84kXEPyCule9O/JL8/NPxWXCHu7Mh/hN3fwX9mvDl8A44t+4rojjaaPczcJv7u3RmA7C7Ps7M4f6USP8OoMnFXk/7vDrjJ9D5uO4Eejoz9lkNr1/FZkQ5OMNOH56fBDW4ojNgP+xFz5XNgV11T9Ee79CryGbSczbXKi8i0+ry2t8R4WCrASN/x+b6eGYwr4rJ8D52WfWtqC3bgyg3Y1UH4LxLt37Fao7Kv5qr8uO5otImq3pOJwZUcfR1tQBiyU5ONzaDdXdr+jPijv46cIaIVW9VLojyO7nMYyz3FVWtCO3DY1a2yq/PjEqbuF6Fxnh8lt+N+zRRXdoqn+9B5SO047lC81/5z3ezIUE0IGy6MtsK1GRd3RPadGV2LmenHwd5kebT+MzsMbJz3QXvM1qO+/y8g8/iT+D6fs7QOF1dn+55vgpnvUuv0x9r/nQ4h64uUS7WCsZUedE5Wo5+bp3P8VNof1mvd4MaT8x6J5zhk/fFz8NrZPbXvYj4h4yGacsuT4ejP7Ldze6HyXgsnzNjJ/ZbrGbevReAnJM5eZ/Rctzn512056h31/dzhsYxNnrqUpvvnwC1q8+T/TFO7/Iqq9rwIWaHO/v7FKu5TuaOgAZ1dL8D75Prm+zcw07sHXzjPjjTbp3Tz5l5Vc1XvYho0woHyHwdunFdsn6yi75CNf/b+Oa9AOhma5fd+0W8rl06OZjD43DO5lvNzdyTfkFV+xRockGb66fiM+g5sxPsTz8bRz+rji578RWR2QlrZzVh9/UNqp5WM5Fv9foJdH48o5lh697FXbzql1X9A9bLyC7tlM4XU1Yv6pVUfdJX5Ucw3nWpxVVRxaxyu0Dn5F7Azn0oyMvWCt7JXfOjZqW1Ww9x2RxZLc7OOll+F9bInhVZjxXsX2fo4H1lc8Of+Sp2ctg/c/Sc2a+SzQVbd2b24iuCPmjv3ulOLOnkoI+KqE+dwdmd6w4+Wa+aX4Htjj669cArf1mVjUatVT4SXUBEFlfls36HTg8rvBeeox7Vp2RxJNIilU/xmhWRXreOsspxv/e4m4vzqqZyWo95Hh/VjmLV5jk8R1qf4pu1Kq70cZK7ynF/dK6ocgHzYdd9RJRPMp/rawzPlW5GVW/HDk776MR36pJu/d0+K6h1pybJNLOay/Nfh3s7vIFsyC6d/Crman3wFo0MaCufvAsl0tut4b136OqrNnO8v079K/UyvA+HWh7DPM9f6Q3/y8k9dXOquCs+EPkzX6THWKC+lYZrRdoRWT1QaWS+qI8ViK9qAep4TEff8f6quju4Vqe3Tm3VieKzGVazvfpPvA/DMAzD8Gfzyn++OwzDMAzD72BeRIZhGIZheIx5ERmGYRiG4THmRWQYhmEYhseYF5FhGIZhGB5jXkSGYRiGYXiMeREZhmEYhuEx5kVkGIZhGIbHmBeRYRiGYRge45UvIvhzsJ0/SXsHUZ3d2p34VUzlz3yf6JNEsZ38k15PcgD8q/U0n+4h0t+tuROfxX56zmEY/lxe8Sfe/ZuYtpR9g0PMyTc/HxcaHVtFN76KW/kUxrkdVH10+wRRbJav9s4+IvLTluWeaN4BdDOyGT5FpF/VrHp3qKF6nf0wDMMOr3kRqdpwfxW/8w0xi4XdYVzky1j1UWlpPey9Vz27L+NqHOyO9+BPEmlGesQ1dvOJ59xN1Jey8l8h047u5WqPjPEn6WgMwzBEvO5FJPqGtvNNr/sNEXEO8jr1nY5fYazmRXvXzewgiu2yylvVrGoxx2NcKyKqqVz1R2ifq1zV7+wrvK6fHfUT5nm826JcpxvPOI/xHoZhGDJe9Tsi/Iap39Ro+wTQ5QKfquV1KrQHjc/sxG04+6rsivtW96KxJMrnWWPh80U7n+5T3K9rF+SwT6xKg7FkFb9CtQDPblfg4wLeU4bmMT6ykZVN7w147F3897///Xs3DMOfxGteRPSbqH+DIzh3v9kCxO7wqW+gpNO7+30G3kG0PkXnXlCfcXju9IN4LqJafKof0FatT8DZeO9cT7Oa1/vlWvkA9tTHU33DMAxXeMWLSPZ/NNyWxWUg9uQbZpYDe7RWPkftGlflEN4B78HPnyTrDXavjzPn4f4uqLuzOnTvEHFcer4D6HT7zcjy2Sd71XNlgx73BGfeLfd3Mz8BGYbfwat+ItJdO1TfJDPNLAd2X0rlpx6eaufe4zPYr+rpGahN18pHMjv6cxtg3/DpDKczraCur5VvB5+lw0mdK2T3hj6qu6RP87Gy/mn3GOyznKvMS8gw/B5e8cuqIPpG2LUppzrVOcoHtPvTyeKiPN2DbqznOSs/8bjqzD2eEVGe65HIvpuTxe2y0oE/w/vd6Ymx/oxwX3Xe0QGRVkRUL6tFjcjnZC8h//nPf/7eDcPwJ/ErXkQiPK7KW/WR7R338Vzle0wW63lK5XM8dkdXz5mvsoNODom0nCivIquVEcWrbUfP80CW67pVnUi3g+u5TlTf7aDKy+DLyLx8DMOfz+v+1YyuzPY06CP7ZspvxidUuqdkmnff5UqP91LNd+XuCDR07eD9nfayW/eb6N1wRXbnjs93h3kBGYbfw/xE5G+qPPrwBB4X5UaxHqfnSEOhP8rBE3h+V1NxW6WR5YMop9LmvrKpD6zOuyDfWel5jsd3e1Idxle57rsSq+dKB8APopgqt8obhuF386qfiHwbfHPk6oBvot1vpKtY/abNfdaHxkaasLmdWnhmi37HY7owPpoFZ7dnswDGZ0R6V4GerwjU5AKr+A6RxkrP++iA2EoXvkyP9iiGulkufFXdYRh+L6/6iUiXqmV+Q1zhcVEee1rp7dbUeM/1mpV25esS1a/OADZAu58JcytN5gK1RVog01vhep8mmutOojvwOuyB9iiHRLmaB7KYSNdjh2EYYv71r/8PAJrmfPkbLhEAAAAASUVORK5CYII=" alt="" />
解决代码及点评
/************************************************************************/
/*
7. 用筛选法求 2到 100之间的素数。
方法如下:首先 2是素数,凡 2 的倍数都不是素数,于是把这些数从数表中筛去,
2以后没有被筛去的第一个数是 3, 然后把 3的倍数都从数表中筛去, 3以后没被筛去的第一个数是 5
,然后把 5 的倍数都从数表中筛去。如此下去,直到遇到某数 K(≤ N),其后没有数可筛选为止,
这时保留下的未被筛去的数就是 2到 N的素数。
*/
/************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <math.h> void main()
{
const int N=101;
int Sn=(int)sqrt(double(N-1)); // 筛选法只要筛选到sqrt(N-1)
int arr[N]; // N个标记,如果arr[k] = 1表示k是素数
for (int i=0;i<N;i++)
{
arr[i]=1; // 初始化时认为全是素数
}
arr[0]=arr[1]=0; // 0和1认为不是素数
for (int j=2;j<Sn;j++) // 从2开始循环
{ // 如果j对应的值是0,那么j是合数,则找下一个
while (arr[j]==0)//循环取得数字
{
j++;
}
for (int i=j+j;i<N;i=i+j)//找到某个素数之后,把它倍数下标对应的值改成0,表示合数
{ arr[i]=0; }
}
for (int i=2;i<N;i++) // 输出下标为1的素数
{
if (arr[i]==1)
{
printf("%5d",i);
}
} system("pause");
}
代码下载及其运行
代码下载链接:
http://download.csdn.net/detail/yincheng01/6653779
解压密码为c.itcast.cn
下载解压后用VS2013打开工程文件
点击 “本地Windows调试器” 执行
程序运行结果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACghSURBVHhe7d0JvF1VfS/w/01IZIaghATos5NTZZ5UKIJMQQkO1VqpVtRaWztRwGKlk+9DRbGKUK20fQ6RatU+a5+tSpUpqNDiwAy19dnKU0IGBpkCCUnu22ufvW/2PdlnuEnuXSfw/ca/Z++1195rnbXvzf1xzr03Yzd9f+X4qhUr4kc//EGsXbs2vvj3SwIAAKbTMR8+s9rqGPv3Hz04njbOeetrY2xsLF503PFx9LGLYv78vcoOAACwtax57OG4/dYb4mMf/WiMj49PhNMylKZAOm/eHvFbZ5wTq2NueQAAAKbLwl3nxvnn/Uncf/99ZTAdO/u8D45/71uXxx/+6btj9dhTqm4AADC9Fu4yJ845+3fiGYefGGOnnnrq+AtecHQcefIvVIcBAGBmLP/PG+NTn7q0E0r/9Lw/j0fG51SHAABgZjz7J+bHm9/4y51Q+pGP/11890erqkMAADAznr3vnmUonVXtx5hSSimllFIzXLWJV0r/8657qiYAAJgZz9znaZPfvv/esnurQwAAMDOesfdTJ4fS/3v3fdUhAIAnhkceeiT+8z/+O+6//6GqZfrNm7dLPPNZPxU77bJTuW8OnTn08rML95haKL3iC5+utqbmp5+1f/zkM38uZs2a+PZVAIAZcd3Xb4iDDviZmL/XU6uW6bdyxb1x0y3fjyOPPqTcN4fOHHrZJJR+f/n91aF2Y4+sqLbazRobi7FZYzE+HuU/GZUq+erlV8bPL3p57LDDjuU+AMBMufKr18XiU34+7ntwddUy/fbYdcf44pe+EcefdGS5bw6dOfTyMwvmdf30fQqVferAgw7qW/sfeGDst/8Bsf8BB8QBxXbdXioCats1R67uuTL+8tz3xdfuaTk23dUce1Tm0XZ8WmtVfO2DZ8Xn7mg7ppRSSm1elS+czWC1jTeqc6h/BH7jfnWs7U95LHVvPlbn1H+q/VTDPufaxCul/73ygaqp3WHPXBBLr7k9/vqa/4xZ222IWXPGY9bc9TG7qAteeULssce8qmfH8Wd9Nq688JfiPe+7OI5e9PLYcaedqyO1lXHNxefHV++udkuHxmvf8yvxc9XeRrfG//6Dy2L+2efEMXtWTaVNr3HQ6y+KX9z0AsNZdXl88P03xgGbjLM19XguzbFjJubRQ/calPtfiuWdo9X6Dn8/et/TNp3zV564BfewVa/5JunYR+OmcnvvOKnR547P/l586sbOdmnhKXHmGSfG08qd9vPuWfre+MC/LCtbmxacfG78zrHzqz0AZsoVX7k2Tj31hTP+CuE///PX4oRFR5X7w87huqVL44Z/u77a6+2Q5z8vjjz22GqvXc85PPBIsZfezd4YBjvGiz9j8a/XpDl8s2pLYx0RR77w2Ljummvihus3zq2cwzHHlO+Qd3Jl5x3y8fEUNDu7e+y+06Q59PJT83eb/Pb9D1Y9WB1qd9gz9oqri1D6T9/9YcxOgXTO+qI2FNvr44yjj+obSl948ivaQ+lF74oVJ14cr35u1XT7pXHupd8pgk+jrbLq6gviM/HG+J0XNb+wp2t8POK1b98YoN53Qxzwtmp/xrU8pxbtz2UU3Rp/f9HyeNHvnRjlcpbre3ccf8HrY8+e92P4e7qp4dZvc/T++HlX3HLgH3bay7lGvK54fikT3/HZM+LK+dWxSfqfN0ljzbZqzgZgKCmMvXTx0XH/w49VLdNv3s7bxz998euTAuEwc7j4/HfHZ//uw9Veb7/0y78ZZ5z7jmqvXa853DspGFfpsdwaK2PpB99zQXzus39dtiWv+qVfj0OLAPqdIix3t//OH7y92mv31CIYN+fQy0/uuevkt+/TS6z96pHH1pb95u0+J/7rvuXx76v+X3z3njvjP+79QdmepKdVfy/pnvtv/Bei2q43q1iH4qF82Xaibb/T4z1vWxwrLv3b+Pdme1F77XdIxC03x72T2qtrFH/K/fknxQmHLItbbl/Z6DOT1fKcWqr9uYxiHRCvOfOk2Kven39gHLj33XHPqgH3o9nW555uWsOt3+ZU63xX3Ry33H1YnHDcXp39/U6Ok/f+Ttx+R+d4MZViMi0fvwPOa9a9t98Qdx9ycOzX1a6UUmpmqlQ8pq0Zq2rcSXMopFn0+zMVzfPa/3Q055B+9mds1qxyfp3HNNf02GmbVTwe+oLnl4Fzw4YNZf39py8pA2l6rNvKoFr0K69XnJPOSz/Q3qnOeOU10xf2Qj2HXlXb+D2l5UT7VNXv+ju/F+vmrI45O6yLOds/HtsVlaSXfFOf+kYsePoPy8ek9Xr1yEX/Se0LUvD5dtyWvq/wnsvj4nMuiKXp+xtTe3wxrkrtk65RjNc8v2oam7Uill70u/HZO26Nz57zu/EHF10e95R9qv2JujTuqM8tx2vsd/W9eOmKqr3t2OXF/rsivXN74yeKtmq8e5ZeMNFnYqy259Ice9I80jjFGiy9tDFWr3lU/Saea4/xU5Vj1O1pnZrtzTVo1spYsWzvmL+g2O55P9L6N9uKat7Tsq3XutbnTz7ec26bzLXPWrSu+fJOYJw4f0Hx3CKWr6rmU0zl7sveVV2vOe6A8ybq1rjqsrE4+YQDu9o3Hm9bh8492zjeHZ8pjn/m1r7nKKWUaq/yy0r5slnanpkaTw9pqzmHtJ2+PvappvRqaHc1tZ3frOL/Ov0ac0hmF+1leKweZxfHUpUhtXg8+rjj4rAjXxCvPu2tsX79+rI+/ckPTWyn9nQ89Zs1NrsMoem8OmB2wmgnnNbqOfSq2sZQWl6odxX/V/abCKNPebx4XBtzntJ5BbVxzdJFx11QbfW6djHpzsG+7Z3NtL0wjlt0eNx4yy3V/sa+E/urLo/Lb9gnDtp/4cSxG5fcFAe8/0Px3rMXxfyxW+Izb/tfsfwlfxzvTW2p3jgWl76tCADVNYqrVddLfb8cC95e9Xv/H8dBN70rPnN7fWzydc48flGcVvR58d4RB7+xaEvjFfP51Jf3jtPrsd7/hvIVs/bn0hy7uV1sxl3xL8sP7lzj7S+N+PKSWLoqHevMI9J45fXfFGM3fXvjuT3HXxlLrxiL19XtbyzmsqRtDSbXHX+XnvOL+zyHYe5pv3XtumdDzG3j/oC1aJnvPSs73/xa75dVthTzKLb3e219rQ/F77/k7rj0wiLgDnHeRN1+U9y496Gx/16NtonqvQ7zj39HnH7It+Pyq1YW17g0Ll3+0vj91xbBtu/aKaWUaqvi/4rgU4Sn2f3r2qVL46Lzzx9YqV/b+ZOq+HpWjtucQ/oaVwa/3pXce++9ZSVn/fEfT1TSPNZ2fne1zqF4rF/VLENh3afoXofVFx53fBxeBM/TXvfbcf/9909U2k/tRx9fBNIqUG681saaaOtah15V66xAoa1Ts2rpldE5dSCduzbmzl1Tto9v2FA+tmq5Xn3N9vZ9YkF6NW6vRXHWhefGcfUX9f0PjkNuuClun9T3rrjsgt+Oc84u6oLvxEHv2Ng/OeRNdRArqgwJL41fOWHBxPlj+7+4CJLfilvTF/Z6Neq+zWuffV5ctixi+coUFFquU1Xn9Gp/rwWxML4Vnzj73XF190+zdz+X5tjN7VTFerx40UGd7b0OioOK4Jv+K6Cex4n7V/3GFsRxJx9enZr69hq/6Pe6RTF21bs7z+3j3yrPKQ5sOnZVt//db8cnxt4SZ01au7b7UY3dVRP3tN+6lv267lmv+5Oq+371W4tUXfOdv6BYyPpYVWW67GpLNf+EU+KQZd+J24p1HO68lXH1V74Vh5yc/mOo2V7VgHXY73VviYVfPq+4N8vixadX1xhwjlJKqU2r83WgfOjrW9ddV37P5KBK/QaqxmvOIbWlrX6VrFmzpqzkwvPOm6ikeazt/GbVJs2h0AmNqS0F0NnlftmWXvVMfWfPim9cfVXxPP81PvC+P5oYM1XaT+3XXnV1cY2ifwqlxTnleXVILbdTIG2Mmdr6VK3+st7aqVm1MoyWgXRN+SrpdnM7b9/fctvtccutt5WVvq30sWLyjz76aHms7XqdKg9Obrv9srhs7LDYf35Xe1kHxYGHfqvzCtJE2z7xknd8ON73gVR/GMdPOq/7+p39yW2pisCUgmz5J+W91FZs7POyOKe87sY6uwxlva5TnTexfVD8cnnem2Ps0t+K3z/r/Li6fIWzc2zSc2mO3dwuKinbqv3U1NlPB9LO5GMb23qMv+qr8YGzfis+OfbmzvN6x8uik3OLY+WfjWOnuuNTvxWfiF+P972uCsYT1XY/OuNP6jfpnhbHe65rdbw+b6Kqtu65Tdrv9Cn7TVR3W/d8i+PLV8SqieMrY9XyiIULNv2PjVRJsVVsD3Heqpvj5mWHx4ETIbm7imv0XYfOeEmxN/Q5Simluqr4q7P8aZe00a8K3//+9wdWqe38Rk1sNuaQqtjpX4W1a9eWdcH552xS9bFS2/mTqvxfsdmZQy29glmkxk6gLKt6VbMKlV+/4qr45rXXTRrvzLf92cR2ak/Hv3bllcXX306g7YTaqsrtznVrE+vQo2pDh9I0wLJl34+3/I/F8aaFL4/T9/zFeO3up8Vrdv6V6gobdb7vIH0zbOeHntquV1Y6lv7U+7ctibd9dFmccvrJ5Q/XjK36Slx45rsaQW4s9lv0sogbb9oYCKZy/f0PiUPv+kJ88spGiLrtsvhyFIGpfHW1nG264ETfK2+r+hV1+yeXdF5l2+TYzXF1fc3mmMX8ry77LIjjf/+dcco+d8WKldWxoiY/l8bYXdtptz6nrHp/k3msjKv/pfOqZ7nfa/yVd8eyItzUr/SuuvXbsax17OJ67/vN+MrCd8b7f6U7kHaq9X6kP/V+9z3tt66pivNvuOnmiWOrrvxIfPmuI6pwl+a2LFZWHw+T5j1oLaqaNN/9T4lTonFO+bHwsurV1pvj05/cOI/bP/nXccM+1cdJ3/Oq/l/9QsTiUza+4puq+fE8YB3SeMsXvzPevjjiy5d+pZrvgLVTSim1SSWzi7A0uwhJ/Sp5/PHHB1bSdn6zyrfvC805dAJbHQTbK2kbs7uStvOblZ5zMrEWxXaaWxkgi+OprfOYXtWs5j1rdhE4r40/+59nToz19nPfG887+qjysW5Lx7/5jWvL59R5dbQKotVYdTgtx2vOoUfVJn4l1PKHOi8H9/I/nrpT7L5T8QSLwdevfTxmbze72J5THFkf4+vWxdp16SfvI9atXxfrN2woJ5Emd+FfXBInvvw1sdMmvxJqeVz53nfGl+6qdpN9Xh5/cM7JMfELeFb8S7zv/G/Hwef+URy/V9VWnveRiNNTW3O7Ojyhc/3lJ/9VvPaAqql0U3zqjL+K71R7EUfEmy5+U+yXNsvxlsXJk/b/TxF8Og791ca1Jh3beI2VV/xZvOeffzTxXFb+7W/Ex9K3NiaH/UZcWIS7jRrzj8bYk+aR5vvFWDCxBl3PedI89o1TTt07vnTD3hPreFvr+J21qdd+78OOiCj6bDL2LR+Lsz668XeVdRRj9L0fA+5p0nNdO+cvX3hEfOfb9biN+1OYWN/CpHmnhgFr0dFv/SaPFc3n3/qx2eO88lj3x22hu33SNTauQ3nP7q7Hq9Z0YXXvepwDQLsv//PSeMXLjo0fP1K9wtjDNVdcXgatQY74+aPimBNOrPba7b7T3PjHLyyNl5za+V2iozSHhx4rAtsknRcQi0hYbl3z1a/Gv339G52mwvOO/vl40UknxdKu9ucX7ccU7WWkTCduzJYTdtl+u0lz6GXBLk+Z/HtKVzzcf6H+8W//JkXdam9Tc+ZsVxyeHY+vXTPx9JKFP/FTceDhR8YOO269f2Z05eXnxbvvPjU+8PpmwNsKii/4f/6uZfHiv2gEjGk28VwWLd86YxdB6szL9o53vL0rCE6jabsfW6rHWozsfAHY6r70T1fHK19xXDywuvMK40zYbcc58Q//eFWc8tIXlfujNIcHH23OIeW6ZmrrGCsDarO9zn9FW3lK1SO90jne6TnRI2XF6teD7rrD5Dn0stfOc6f2z4yeetobY9Ev/HLPOu7UV8eLFr8yTupqP+iIo2L7HXZovebm1l4nvTQO+/YNcVvLsS2pVbd+K5bts3fnbeYZqvq5XLlZY6+IKy/4WGMdbo5PfeT62PvQg7M8h619P6ZWw6/FaMxXKaXUjFV6K3n2zFX9gz6jOIfOdnpM1cx/6ZzOW+8pYXb6dto6/aq+6U/VUPx/57Har9vKt/XTdtscWqo28UrpqtXdL+c+idzykTjjb9I/nfW8ePOH3hz7d1pnxpaOveKyeO95n4/6HfN9XnZenHPigmrvScZaANDlqsuvi8MOeXYsXDhT7x9G3H33yvj2Dd+N4048stw3h84cetlzx+0mv31/z+r11SEAgCeGhx9aHf/2rzfGo4/O3D8zusMO28fzX3Bw7LxL51sXzaH/t3A+bcfZk0PpvY/2+T2jAAAwDZ66w6zJ31NafhOAUkoppZRSM1mViVdK73ts05++AgCA6bTH9mOdt+8XL148/tEln+4ZSq+/4vPVFgAATN3pp58e373roWpvshRKf/UNpw0XSq+/Pv10OAAATM25554b++6779YLpZdccknVAgDAk8Fjjz0Wq1atiu222y7mzp1b/vOhTen3jI6Pj0/6faNJ/TtI0/lr1qwZKpROvjIAAGQglAIAkJ1QCgBAdtvU95QuXbq02uo49thjq63RMMrz655bbVTm2Gt+yUzPMc2l35iDjk+3XuN3r2GuObbNr3tuTTM9z1Fdv0Hjm19/w46f+s303JJ+8+s+1pRzrm1j51q/prb59VvfmdY9v+65Nc3EPHuNP+z6+Z7SFs2bPMyNnmmjPr9aPb/mPEdJ7rkNume572mv8Ufl42/QmKN6f3Ov36Dxza+/YcefyTk1DTu/+njdJ4d+a5Rr/Zra5jDs+s6EfuPmvr/N8ZtzGKX18/b9VtJ9k9m2pE/Afp+Eg45Pt0Hj5/74y70+g4z6/Abx90t/g9Yn9/3fVu5frzUalc+fXnMYlfUdhTXaHFu6frNnzy5fQU2PW2qbCaWj8kHH9Mh9fweNP+rzy23Q/HLPP/f4g5jf9LK+g9WBqm0eoz6/UTDq6zddUhBNb+c///nPLx+3NJhuk6+UjvIHZ5rbtjC/eo6japTXcJQ17+0or92ozbGeR3P9cum3Ns355Vq7tvFHZf1GYX36GXZ+M/0cRnnNkmHnN+z6bm1THTPXetfrU4/frXlsmLmlAJrqOc95Tmy//fbxlre8ZYuD6TYXSqeyYDmkedVz63Xjc6jnNarzaxr1ezzK3N/N11y7JMf8Bq1Nc4457m+/+TXnlrT1mW7NOYzix/8w8xv0MTCd0tjNeY3aGg6aX+77P2h+Sd02k/e3XpdB6zPoeFMdSPfbb7947nOfGyeccEIcfPDBcfHFF29RMN2mQmmOm8nMco+f2Nzf3kZ9bdy76ZdrjdN4zarN9Dx6eaLM74n0OZRC5xve8IZ49atfHa961avi8MMPL8PpC17wgrjmmms2+Qn9YW0zobT7Zqb9um0UjNp8uo36/Ngy7u/WUa/hTH/R6B63+35278+0QfOrdfebKb3mMypGfX7bOuvb36D12Zz1W79+fSxZsiT+5E/+JF7zmtfEokWL4oUvfGEcccQRccwxx8SGDRuqnlOzzfye0l4LNtN/+fXTPcdRmlsy6vNL6jnm+KLWpp5H7o+/YcbPeX+HXZ+630zOLZnq+o36/JKZnOOor1/Sb32Gmf90G+b+1X1yrF+tbZ6jsH61Xus4zPrOhH7zqI+N0rrV+h2fyd9Tuk398nwAAGaOX54PAMCTilAKAEB2QinAk0D394z10qvfsOcn/fpO5TrJ1hq3NqjPls59S8+HJzOhFOAJYLoDT/rBhy0ZI51bn9/rOnWfZvVrn24zNQ7Q4QedAJ4gUoiqf2p2mEDV9lPAzWt063esqe7XPYdhzk16jTNo/OZ4zfHb5pJ0X6v7+oP2u7Udbxu31u9aMCrSDyrdeuutceedd8a9995btW7U6weddt999/jZn/3Z8gechv1Bp0ihdMU9D43/+48ebK0lS5aMv/Wtb02JVSml1AhXEYBa21P1O9asZr+0Paia59bndLf1a+9V3f2HOX+Y+dT7w/ZttvXabmsbdFypbaWKUDr+uc99bvxHP/rR+OrVqyfqkUceKasIquOrVt07vnLlqvEVK1aOL1t29/gPfnDn+E033TL+D//wD0X7yvEf/vCHRW4db82ZqVIOTXl0ZF4pLT5Zq63Juv8rtSnHf2U259Br/NQn138B95pfr/VNZmKuUxk/x/oNM7/uPjM5x1GfXzJofPPrr9/43cea+s1z2PPa+qXjqX3Q9buP9zqn37Xaxh9Wfc1+4/bTdn69PeixqbttmD6wLUivlH784x+P008/vdxPr4quX78hNoxviPEN4/Hww4+Uv0x//YYNsX7d+nj0sUfjwQcfit132zW+9vWl8Yuv+sVt7/eUpk/WpNcnbPfxQf2nwzBj5phXrd/Ybcdmcq7Djj+Tc2oaNJfu4zM9z21tflPdn25PtPklU51j6j9M37pfd/9B+0lqS9rGaeu/NdVj19JYvebYfazt3KT7/LbrJd3nJ/UYg7RdD0ZJHUpf//rXl/vpX2sqQ2nxmOqBBx6KdevWFaG0CKZFKH1k9epY89ia2G23XeLa674+pVDqB52GVP/l0usvkHR8mL+Apsug+Y263Os3SFpXXzw2n/WbXvXnT/NzqNlWt3e31e1tBt2v6bqfbXPsrm6prZ5Pr4+15rnd16jP6Xde89zmftJ9fvOxX8G2Jr1KumFDqk4gTeF03fp1ZSh9fO3jsbao9Opp6pdqqoTSrWTU/5LJPb9B44/6/HIb9fnVml+oR9Goz6+XQfe/7XjdNqja1OtUh6+2/WZ7krbr63X3SdWvvVv3HJvVpq29vnb92Dy/17VS3+72um/d3r3f1HZ+0nyezXm19YUns5H+ntLuT9hh+kyXYceu+830XzZTXZtc86z1Gj/3vGqD5pfknGPb/Jpzq83kHLvHbxs75/oNmt+orV/Sa/y6b9tzaLa1XbPWdu2pXLfXfvexWq/2bqnfIN3XaTunez79+iRt82u2Nc/v7pe0nd9UHx/UD0ZN8+37+vtJ0/eQ1q+U/viBB2Ld451XS9etWx9r164t365Pb99f96/f2Dbfvk+fpM1Kmn8JJM1jSXN7pvSb3ygYZn51e471S3KPP0i/+Q2zvtOt1/yac0u6j0+ntjm1rU9zjjO5fsPMrzm3pLk9E4Ydv+259FNft1nd0jVTtR0bxuae10tzrt3Vpnms3u53f5vbSd23Xofuc9N+89y24/Vjs+q2pDke0M7b908yuf+CHPW/oM1vy436F99Rn18/m3P/0znd1S1dr9c1U/+ZXrPu+TZrc3Sf371fP796HZrPN/Xpfv5pvz43qY/X59ZVtzX7Ar2NTCht/gXRT92n/oSHmTDsx2duo/r5Yf2GMx3jp2t111Sk/s37lx6neo2p6J5nc7/ZPkjqV8+1+9zu/aS53TRse1u/7nXr3q73a73ah5X7fJ4cZs+eHXPnzo2nPGVubL/9U2LXXXaJ3XbbNebN2z322GNe7LzzTlXPqRupt++T5idE9yd5zk+UQfNrtifd+9NtmPUbZd3r1b2f27awvjnXa9D65F6/Ycav23PZmuM3r1U/52ZNVVqrVOnc6bpv9bya86vHbNPvefQ7Nkg6d2ucn6pet7qS5mO9DduSWbNmxaKTTozfO+OMePf574qLL7owPvTBi+MfP/+5uPmm7xRBdfuq52bwLzoppdQTo4ogNPBfFerXnmrQOf3OTbU5Y6bqdf1++23H6rbux35Vn9fdd9B+s73t/GYNey2lRq3Sv+h0ySWXlP9608MPPzy+evWj42/5tV8b/0SRD7/whS9M1JVXXjn+zW9+c/x73/uv4uP7G+M33njz+F9++C+n9C86+Z5SgCeQfq++FUGo2trUoGPNV/j69a2lPs3q1Zak7V7znuqrifX8uufbq+o+zcem7r7N/bqt3/lJ6td9LO3X58O2JP3U/YUfuCh+4ZWvLD6OXxRHHPH8OPTQw+MZz3hW7LnngvKn9TfXyPxKKAC2rrYw1NZW6z5Wh6a2/r2u0+/6w6rH7WVLrz9T+q1fsjXWCqZb96+EmjVrdpx4wvHx7Gc/uwihe1a9IhYuXBhPf/rT47n7HRh33bVss34llFAKAECrtlD6e2f8bhx11FGx+7x5Va+InXfeOXbZZZeYN+9pmx1KvX0PAMBQpvPte6EUAIChTOdP3wulAAAMbdGiRXHqqafGScVjXUc873nxUz/901WPzSOUAgAwlPT2/Vlnvy2OP+GEOPTQw+I5z3luPPOZz4599vmJ2HXXed6+BwBg+q1fvz7Wrl0ba9asLQLomnjwoYfigQcejPvv/3Hcd9/98fDDj1Q9p04oBQAgO6EUAIDshFIAALITSgEAyE4oBQAgO6EUAICB0j8zmir9WqhU4+PF4/rOdqfWx4bUVtTmEEoBAOgrhdH1RQBdt25d+Wuh0nZn//FOrV83cSz13RxCKQAAPc2bNy9+/OMfx9hYERxnzYrZs2fFdtvNjjlztosdd9whdtppp9h1112KfrvF0566R+w1f8/yd5nuvtvu1RWGM7Z48eLxjy75dNz3WHuqvf6Kz8f1118fl1xySdUCAMCTQfoXmm688ca4884749777q1aB0uBdP78+XHggQfGmjVrYt99943v3vVQdXSyPbYfi199w2lCKQAA7VIoXbVqVWy33XYxd+7c8pXSprGxsfLt+vTYlPZTpfOHDaXevgcAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACAoc2ePTvmzp1b1pw5cyYe60rHN4dQCgDA0FLoPOqoo+Kggw4q69BDD41FixbFmWeeGZdccknMmrV58VIoBQBgaOvXr49rr722DKRHHnlkvOIVr4i3vvWtcdppp5WPGzZsqHpOjVAKAMDQUihNtWTJkpg/f34ZTp/1rGfFEUccUQbSdGxzCKUAAPQ1NjY2qVL4TPXOd76zfDv/Oc95zhYF0kQoBQCgrxQ824Lp+Ph4vOQlLykf0353n6kQSgEA6CuF0vQDTN2hMwXRdevWbXEgTYRSAAD6qgNpt7qtGUbb+g1DKAUAoK+2V0mHqakQSgEA6KtXKE3qxy0llAIA0Nfq1as3q6ZibPHixeMfXfLpuO+x8appsuuv+Hwcf/zx1R4AAEzNvvvuG9+966Fqb7I9th+LX33DaYND6bP32aXaAgCAzbPFoRQAAKZLHUp9TykAANkJpQAAZCeUAgCQnVAKAEB2QikAANlN/PQ9AADkMPEroap9AADIIOL/A3CdL0ua6KkjAAAAAElFTkSuQmCC" alt="" />