python字符数字识别

 

一、环境配置

1.1需要 pillow 和 pytesseract 这两个库,pip install 安装就好了。

python字符数字识别

 

 

pip install pillow -i http://pypi.douban.com/simple --trusted-host pypi.douban.com
pip install pytesseract -i http://pypi.douban.com/simple --trusted-host pypi.douban.com

  

1.2安装好Tesseract-OCR.exe

官网

https://github.com/UB-Mannheim/tesseract/wiki

python字符数字识别

 

 下载地址 https://digi.bib.uni-mannheim.de/tesseract/tesseract-ocr-w64-setup-v5.0.0-rc1.20211030.exe

python字符数字识别

 

python字符数字识别

 

 

 python字符数字识别

 

 python字符数字识别

 python字符数字识别

 

 

 

 改变了默认路径后面识别好想要修改

python字符数字识别

 

 

1.3pytesseract 库的配置

搜索找到pytesseract.py,打开该.py文件,找到 tesseract_cmd,改变它的值为刚才安装 tesseract.exe 的路径。

python字符数字识别

 python字符数字识别

 

 

python字符数字识别

 

 

 python字符数字识别

 

 注意反斜杠

python字符数字识别

 

 

二、验证码识别

识别验证码,需要先对图像进行预处理,去除会影响识别准确度的线条或噪点,提高识别准确度。

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波  去噪
    dst = cv.pyrMeanShiftFiltering(image, sp=10, sr=150)
    # 灰度图像
    gray = cv.cvtColor(dst, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    # 形态学操作   腐蚀  膨胀
    erode = cv.erode(binary, None, iterations=2)
    dilate = cv.dilate(erode, None, iterations=1)
    cv.imshow('dilate', dilate)
    # 逻辑运算  让背景为白色  字体为黑  便于识别
    cv.bitwise_not(dilate, dilate)
    cv.imshow('binary-image', dilate)
    # 识别
    test_message = Image.fromarray(dilate)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/044.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

  运行效果如下:

识别结果:3n3D

Process finished with exit code 0

  python字符数字识别

 

 

实例2

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波  去噪
    blur =cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
    cv.imshow('dst', blur)
    # 灰度图像
    gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
    # 二值化
    ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY_INV | cv.THRESH_OTSU)
    print(f'二值化自适应阈值:{ret}')
    cv.imshow('binary', binary)
    # 形态学操作  获取结构元素  开操作
    kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 2))
    bin1 = cv.morphologyEx(binary, cv.MORPH_OPEN, kernel)
    cv.imshow('bin1', bin1)
    kernel = cv.getStructuringElement(cv.MORPH_OPEN, (2, 3))
    bin2 = cv.morphologyEx(bin1, cv.MORPH_OPEN, kernel)
    cv.imshow('bin2', bin2)
    # 逻辑运算  让背景为白色  字体为黑  便于识别
    cv.bitwise_not(bin2, bin2)
    cv.imshow('binary-image', bin2)
    # 识别
    test_message = Image.fromarray(bin2)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/045.png')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

  

运行效果如下:

 

二值化自适应阈值:181.0
识别结果:8A62N1

Process finished with exit code 0

  

 

python字符数字识别

 

 

 

实例3

import cv2 as cv
import pytesseract
from PIL import Image


def recognize_text(image):
    # 边缘保留滤波  去噪
    blur = cv.pyrMeanShiftFiltering(image, sp=8, sr=60)
    cv.imshow('dst', blur)
    # 灰度图像
    gray = cv.cvtColor(blur, cv.COLOR_BGR2GRAY)
    # 二值化  设置阈值  自适应阈值的话 黄色的4会提取不出来
    ret, binary = cv.threshold(gray, 185, 255, cv.THRESH_BINARY_INV)
    print(f'二值化设置的阈值:{ret}')
    cv.imshow('binary', binary)
    # 逻辑运算  让背景为白色  字体为黑  便于识别
    cv.bitwise_not(binary, binary)
    cv.imshow('bg_image', binary)
    # 识别
    test_message = Image.fromarray(binary)
    text = pytesseract.image_to_string(test_message)
    print(f'识别结果:{text}')


src = cv.imread(r'./test/045.jpg')
cv.imshow('input image', src)
recognize_text(src)
cv.waitKey(0)
cv.destroyAllWindows()

  运行效果如下:

二值化设置的阈值:185.0
识别结果:7364

Process finished with exit code 0

  python字符数字识别

 

 

 

 

错误1
安装tesseract-ocr时,改变了默认路径,执行命令出现如下错误:
 python字符数字识别

增加一个TESSDATA_PREFIX变量名,变量值为我的语言字库文件夹安装路径F:\Tesseract-OCR\tessdata 添加到变量中;如下图:
python字符数字识别

错误2
当字库里面没有对应字库时,会提示以下错误:
 python字符数字识别

识别结果
示例1:先拿一个比较简单图片来识别
 python字符数字识别

切换到图片目录在cmd窗口执行以下命令行:

python字符数字识别

 
tesseract test1.png result -l chi_sim
-l chi_sim 表示用简体中文字库(需要下载中文字库文件,解压后,存放到tessdata目录下去,字库文件扩展名为 .raineddata 简体中文字库文件名为: chi_sim.traineddata)
 

打开图片目录下result.txt

python字符数字识别

上一篇:hdu 1151 Air Raid(二分图最小路径覆盖)


下一篇:PCL - ICP代碼研讀(二 ) - Registration架構