OpenCV GaussianBlur 结果不一致
TL;DR
OpenCV高版本的GaussianBlur,某些条件下会用定点化计算替代浮点计算,导致跨版本的结果不一致:
void GaussianBlurFixedPoint(const Mat& src, /*const*/ Mat& dst,
const uint16_t/*ufixedpoint16*/* fkx, int fkx_size,
const uint16_t/*ufixedpoint16*/* fky, int fky_size,
int borderType)
{
CV_INSTRUMENT_REGION();
CV_Assert(src.depth() == CV_8U && ((borderType & BORDER_ISOLATED) || !src.isSubmatrix()));
fixedSmoothInvoker<uint8_t, ufixedpoint16> invoker(
src.ptr<uint8_t>(), src.step1(),
dst.ptr<uint8_t>(), dst.step1(), dst.cols, dst.rows, dst.channels(),
(const ufixedpoint16*)fkx, fkx_size, (const ufixedpoint16*)fky, fky_size,
borderType & ~BORDER_ISOLATED);
{
// TODO AVX guard (external call)
parallel_for_(Range(0, dst.rows), invoker, std::max(1, std::min(getNumThreads(), getNumberOfCPUs())));
}
}
问题描述
在移植OpenCV的GaussianBlur相关函数,测试阶段发现和OpenCV结果不一致,但是肉眼看不出差异。于是对比了多个版本的OpenCV,发现它们之间结果也不一致。
样例代码
namespace cv
{
static void test_GaussianBlur()
{
std::string im_pth = "../../imgs/IU.bmp";
Mat src = imread(im_pth);
Mat dst;
Size size(3, 3);
GaussianBlur(src, dst, size, 0, 0);
imwrite("IU-gaussian-blur.bmp", dst);
}
}
测试结果
第一种结果: OpenCV 2.4.13 OpenCV 3.1.0
第二种结果: OpenCV 3.4.5 OpenCV 3.4.9 以及我的移植版本
说明:所用OpenCV都是PC CPU版本,关闭IPP优化。
调试排查
以OpenCV3.4.9为例,会把满足一定条件的图像,执行定点化版本的高斯模糊,而不是浮点数版本的计算。这是相当于OpenCV3.1.0 / 2.4.13版本增加的内容。
看完整源码:
void GaussianBlur(InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2,
int borderType)
{
CV_INSTRUMENT_REGION();
int type = _src.type();
Size size = _src.size();
_dst.create( size, type );
if( (borderType & ~BORDER_ISOLATED) != BORDER_CONSTANT &&
((borderType & BORDER_ISOLATED) != 0 || !_src.getMat().isSubmatrix()) )
{
if( size.height == 1 )
ksize.height = 1;
if( size.width == 1 )
ksize.width = 1;
}
if( ksize.width == 1 && ksize.height == 1 )
{
_src.copyTo(_dst);
return;
}
bool useOpenCL = (ocl::isOpenCLActivated() && _dst.isUMat() && _src.dims() <= 2 &&
((ksize.width == 3 && ksize.height == 3) ||
(ksize.width == 5 && ksize.height == 5)) &&
_src.rows() > ksize.height && _src.cols() > ksize.width);
CV_UNUSED(useOpenCL);
int sdepth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
Mat kx, ky;
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
CV_OCL_RUN(useOpenCL, ocl_GaussianBlur_8UC1(_src, _dst, ksize, CV_MAT_DEPTH(type), kx, ky, borderType));
CV_OCL_RUN(_dst.isUMat() && _src.dims() <= 2 && (size_t)_src.rows() > kx.total() && (size_t)_src.cols() > kx.total(),
ocl_sepFilter2D(_src, _dst, sdepth, kx, ky, Point(-1, -1), 0, borderType))
Mat src = _src.getMat();
Mat dst = _dst.getMat();
Point ofs;
Size wsz(src.cols, src.rows);
if(!(borderType & BORDER_ISOLATED))
src.locateROI( wsz, ofs );
CALL_HAL(gaussianBlur, cv_hal_gaussianBlur, src.ptr(), src.step, dst.ptr(), dst.step, src.cols, src.rows, sdepth, cn,
ofs.x, ofs.y, wsz.width - src.cols - ofs.x, wsz.height - src.rows - ofs.y, ksize.width, ksize.height,
sigma1, sigma2, borderType&~BORDER_ISOLATED);
CV_OVX_RUN(true,
openvx_gaussianBlur(src, dst, ksize, sigma1, sigma2, borderType))
//CV_IPP_RUN_FAST(ipp_GaussianBlur(src, dst, ksize, sigma1, sigma2, borderType));
if(sdepth == CV_8U && ((borderType & BORDER_ISOLATED) || !_src.getMat().isSubmatrix()))
{
std::vector<ufixedpoint16> fkx, fky;
createGaussianKernels(fkx, fky, type, ksize, sigma1, sigma2);
static bool param_check_gaussian_blur_bitexact_kernels = utils::getConfigurationParameterBool("OPENCV_GAUSSIANBLUR_CHECK_BITEXACT_KERNELS", false);
if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fkx))
{
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fx kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2));
}
else if (param_check_gaussian_blur_bitexact_kernels && !validateGaussianBlurKernel(fky))
{
CV_LOG_INFO(NULL, "GaussianBlur: bit-exact fy kernel can't be applied: ksize=" << ksize << " sigma=" << Size2d(sigma1, sigma2));
}
else
{
if (src.data == dst.data)
src = src.clone();
//-------------!! 注意这里,dispatch到fixedpoint这一版本的实现上
CV_CPU_DISPATCH(GaussianBlurFixedPoint, (src, dst, (const uint16_t*)&fkx[0], (int)fkx.size(), (const uint16_t*)&fky[0], (int)fky.size(), borderType),
CV_CPU_DISPATCH_MODES_ALL);
return;
}
}
//-------!!先前几行的dispatch分支算好后直接return,不会fall back到sepFilter2D
sepFilter2D(src, dst, sdepth, kx, ky, Point(-1, -1), 0, borderType);
}
而OpenCV 3.1.0的实现则是这样的:
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2,
int borderType )
{
int type = _src.type();
Size size = _src.size();
_dst.create( size, type );
if( borderType != BORDER_CONSTANT && (borderType & BORDER_ISOLATED) != 0 )
{
if( size.height == 1 )
ksize.height = 1;
if( size.width == 1 )
ksize.width = 1;
}
if( ksize.width == 1 && ksize.height == 1 )
{
_src.copyTo(_dst);
return;
}
#ifdef HAVE_TEGRA_OPTIMIZATION
Mat src = _src.getMat();
Mat dst = _dst.getMat();
if(sigma1 == 0 && sigma2 == 0 && tegra::useTegra() && tegra::gaussian(src, dst, ksize, borderType))
return;
#endif
CV_IPP_RUN(true, ipp_GaussianBlur( _src, _dst, ksize, sigma1, sigma2, borderType));
Mat kx, ky;
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType );
}
显然它是始终调用sepFilter2D的实现的。