AcWing 407. 稳定的牛分配

大型补档计划

题目链接

题目看的有点晕(语文差)

总体来说就是让每头牛找个谷仓,不能超过容量,最小化每头牛在的谷仓在自己心目中排名的极差。

显然这个最优性问题不好做,但是转换为判定性问题这就是一个标准的二分图多重匹配(即一头牛匹配一个谷仓,一头牛只能匹配一个,一个谷仓接受的牛有上限),所以二分这个极差(显然满足单调性),然后枚举左右端点就行了,跑构建网络跑最大流即可。

时间复杂度 \(O(\sqrt{N}MBLogB)\),最大边数 \(M = N * B\) 的规模,所以复杂度 \(O(\sqrt{N}N * B ^ 2 LogB)\),大概 \(5e7\) 的量级,还是能混过去的

注意每次 \(dfs\) 前清空 \(d\) 数组,太坑了我查了好久。。

#include <cstdio>
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1025, S = 25, INF = 1e9;
int n, B, s, t, a[N][S], b[S], d[N], q[N];
int head[N], numE;
struct E{
    int next, v, w;
} e[(N * S + N + S) << 1];
void add(int u, int v, int w) {
    e[++numE] = (E) { head[u], v, w };
    head[u] = numE;
}
void addEdge(int u, int v, int w) {
    add(u, v, w), add(v, u, 0);
}
// 建图
void build(int l, int r) {
    numE = 1;
    memset(head, 0, sizeof head);
    for (int i = 1; i <= n; i++) addEdge(s, i, 1);
    for (int i = 1; i <= B; i++) addEdge(n + i, t, b[i]);
    for (int i = 1; i <= n; i++) 
        for (int j = l; j <= r; j++) addEdge(i, n + a[i][j], 1);
}


bool bfs() {
    memset(d, 0, sizeof d);
    int hh = 0, tt = 0;
    q[0] = s, d[s] = 1;
    while (hh <= tt) {
        int u = q[hh++];
        for (int i = head[u]; i; i = e[i].next) {
            int v = e[i].v;
            if (e[i].w && !d[v]) {
                d[v] = d[u] + 1;
                q[++tt] = v;
                if (v == t) return true;
            }
        }
    }
    return false;
}

int dinic(int u, int flow) {
    if (u == t) return flow;
    int rest = flow;
    for (int i = head[u]; i && rest; i = e[i].next) {
        int v = e[i].v;
        if (d[v] == d[u] + 1 && e[i].w) {
            int k = dinic(v, min(e[i].w, rest));
            if (!k) d[v] = 0;
            e[i].w -= k, e[i ^ 1].w += k;
            rest -= k;
        }
    }
    return flow - rest;
}

// 所有牛排名控制在 x 以内行不行?
bool check(int x) {
    for (int l = 1, r; (r = l + x - 1) <= B; l++) {
        build(l, r); 
        int maxflow = 0, res;
        while (bfs()) 
            while(res = dinic(s, INF)) maxflow += res;
        if(maxflow == n) return true;   
    }
    return false;
}
int main() {
    scanf("%d%d", &n, &B);
    s = n + B + 1, t = n + B + 2;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= B; j++) scanf("%d", &a[i][j]);
    for (int i = 1; i <= B; i++) scanf("%d", b + i);
    int l = 1, r = B;
    while (l < r) {
        int mid = (l + r) >> 1;
        if (check(mid)) r = mid;
        else l = mid + 1;
    }
    printf("%d\n", r);
    return 0;
}

AcWing 407. 稳定的牛分配

上一篇:AcWing04(多重背包板子)


下一篇:Window Server 2019 配置篇(9)- 运行组策略使得文件在特定用户之间共享