1、了解装饰器前准备
#### 第一波 ####
def foo():
print 'foo' foo #表示是函数,仅指向了函数的地址,为执行
foo() #表示执行foo函数 #### 第二波 ####
def foo():
print 'foo' foo = lambda x: x + 1 foo() # 执行下面的lambda表达式,而不再是指向原来的foo函数,因为函数 foo 被重新定义了
2、装饰器解决需求
初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:
############### 基础平台提供的功能如下 ############### def f1():
print 'f1' def f2():
print 'f2' def f3():
print 'f3' def f4():
print 'f4' ############### 业务部门A 调用基础平台提供的功能 ############### f1()
f2()
f3()
f4() ############### 业务部门B 调用基础平台提供的功能 ############### f1()
f2()
f3()
f4()
增加 调用基础功能前需要验证 功能
目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。
1 最不能使用的方法
每个业务部门自己写代码,调用基础平台的功能之前先验证。
2 费事的方法 不可取
只对基础平台的代码进行重构,让N业务部门无需做任何修改
############### 基础平台提供的功能如下 ############### def f1():
# 验证1
# 验证2
# 验证3
print 'f1' def f2():
# 验证1
# 验证2
# 验证3
print 'f2' def f3():
# 验证1
# 验证2
# 验证3
print 'f3' def f4():
# 验证1
# 验证2
# 验证3
print 'f4' ############### 业务部门不变 ###############
### 业务部门A 调用基础平台提供的功能### f1()
f2()
f3()
f4() ### 业务部门B 调用基础平台提供的功能 ### f1()
f2()
f3()
f4()
3 稍微可取的一个本方法 封装成函数
只对基础平台的代码进行重构,其他业务部门无需做任何修改
############### 基础平台提供的功能如下 ############### def check_login():
# 验证1
# 验证2
# 验证3
pass def f1(): check_login() print 'f1' def f2(): check_login() print 'f2' def f3(): check_login() print 'f3' def f4(): check_login() print 'f4'
引出装饰器
写代码要遵循开放封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
- 封闭:已实现的功能代码块
- 开放:对扩展开发
如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
return func()
return inner @w1
def f1():
print 'f1'
@w1
def f2():
print 'f2'
@w1
def f3():
print 'f3'
@w1
def f4():
print 'f4'
这段代码原理:
拿单个业务来说:
将f1函数名作为参数传入 w1 函数 ,重新赋值给f1
这样就是 f1 = w1(f1),因此 func = f1,新赋值
而 w1 函数返回值为 inner函数名, 因此 f1 = inner,新赋值
重新执行f1() 就相当于执行 inner(), 而原来的func = 原来的f1的函数体,所以就会先执行验证1 2 3 之后再执行原来的f1的函数体,并返回。
单独以f1为例:
def w1(func):
def inner():
# 验证1
# 验证2
# 验证3
return func()
return inner @w1
def f1():
print 'f1' # @w1
# 1、执行w1函数,将f1作为参数传递
# 2、将w1的返回值,重新赋值给f1
当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:
- def w1(func): ==>将w1函数加载到内存
- @w1
没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名 是python的一种语法糖。
如上例@w1内部会执行一下操作:
1、执行w1函数,并将 @w1 下面的 函数 作为w1函数的参数,即:@w1 等价于 w1(f1)
所以,内部就会去执行:
def inner:
#验证
return f1() # func是参数,此时 func 等于 f1
return inner # 返回的 inner,inner代表的是函数,非执行函数
其实就是将原来的 f1 函数塞进另外一个函数中
2、将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
w1函数的返回值是:
def inner:
#验证
return 原来f1() # 此处的 f1 表示原来的f1函数
然后,将此返回值再重新赋值给 f1,即:
新f1 = def inner:
#验证
return 原来f1()
所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着
装饰器原理
3、装饰器时候,函数参数调用
def w1(func):
def inner(arg):
# 验证1
# 验证2
# 验证3
return func(arg)
return inner @w1
def f1(arg):
print 'f1' 一个参数 一个参数
一个参数
def w1(func):
def inner(arg1,arg2):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2)
return inner @w1
def f1(arg1,arg2):
print 'f1' 两个参数 两个参数
两个参数
def w1(func):
def inner(arg1,arg2,arg3):
# 验证1
# 验证2
# 验证3
return func(arg1,arg2,arg3)
return inner @w1
def f1(arg1,arg2,arg3):
print 'f1' 三个参数 三个参数
三个参数
问题1:不同业务部门的调用函数的参数个数不同如何解决??可以装饰具有处理n个参数的函数的装饰器?
def w1(func):
def inner(*args,**kwargs):
# 验证1
# 验证2
# 验证3
return func(*args,**kwargs)
return inner @w1
def f1(arg1,arg2,arg3):
print 'f1'
问题2 :一个函数可以被多个装饰器装饰吗? 比如两个装饰器
会先将 函数交个最下层@装饰器将处理结果在交给其上一层@装饰器 即先交给w2 再交给w1
def w1(func):
def inner(*args,**kwargs):
# 验证1
# 验证2
# 验证3
return func(*args,**kwargs)
return inner def w2(func):
def inner(*args,**kwargs):
# 验证1
# 验证2
# 验证3
return func(*args,**kwargs)
return inner @w1
@w2
def f1(arg1,arg2,arg3):
print 'f1'
#!/usr/bin/env python
#coding:utf-8 def Before(request,kargs):
print 'before' def After(request,kargs):
print 'after' def Filter(before_func,after_func):
def outer(main_func):
def wrapper(request,kargs): before_result = before_func(request,kargs)
if(before_result != None):
return before_result; main_result = main_func(request,kargs)
if(main_result != None):
return main_result; after_result = after_func(request,kargs)
if(after_result != None):
return after_result; return wrapper
return outer @Filter(Before, After)
def Index(request,kargs):
print 'index'
装饰器固定格式
def timer(func):
def inner(*args,**kwargs):
'''执行函数之前要做的'''
re = func(*args,**kwargs)
'''执行函数之后要做的'''
return re
return inner 装饰器的固定格式
from functools import wraps def deco(func):
@wraps(func) #加在最内层函数正上方
def wrapper(*args,**kwargs):
return func(*args,**kwargs)
return wrapper 装饰器的固定格式--wraps版