scrapy自动抓取蛋壳公寓最新房源信息并存入sql数据库

利用scrapy抓取蛋壳公寓上的房源信息,以北京市为例,目标url:https://www.dankegongyu.com/room/bj

思路分析

每次更新最新消息,都是在第一页上显示,因此考虑隔一段时间自动抓取第一页上的房源信息,实现抓取最新消息。

利用redis的set数据结构的特征,将每次抓取后的url存到redis中;

每次请求,将请求url与redis中的url对比,若redis中已存在该url,代表没有更新,忽略该次请求;若redis中不存在该url,代表该信息是新信息,抓取并将url存入到redis中。

分析页面源码,发现该网页属于静态网页;首先获取最新页面每条数据的url,请求该url,得到详细页面情况,所有数据均从详情页面获取。

代码实现

明确抓取字段

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html import scrapy class DankeItem(scrapy.Item):
"""
编辑带爬取信息字段
"""
# 数据来源
source = scrapy.Field()
# 抓取时间
utc_time = scrapy.Field() # 房间名称
room_name = scrapy.Field()
# 房间租金
room_money = scrapy.Field()
# 房间面积
room_area = scrapy.Field()
# 房间编号
room_numb = scrapy.Field()
# 房间户型
room_type = scrapy.Field()
# 租房方式
rent_type = scrapy.Field()
# 房间楼层
room_floor = scrapy.Field()
# 所在区域
room_loca = scrapy.Field()
# 所在楼盘
estate_name = scrapy.Field()

编写爬虫逻辑

# -*- coding: utf-8 -*-
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from danke.items import DankeItem class DankeSpider(CrawlSpider): # 爬虫名
name = 'dkgy3' # 允许抓取的url
allowed_domains = ['dankegongyu.com'] custom_settings = {'DOWNLOAD_DELAY': 0.2} # 请求开始的url
start_urls = ['https://www.dankegongyu.com/room/sz'] # rules属性
rules = ( #编写匹配详情页的规则,抓取到详情页的链接后不用跟进
Rule(LinkExtractor(allow=r'https://www.dankegongyu.com/room/\d+'), callback='parse_detail', follow=False),
) def parse_detail(self, response):
"""
解析详情页数据
:param response:
:return:
"""
node_list = response.xpath('//div[@class="room-detail-right"]')
for node in node_list:
item = DankeItem() # 房间名称
room_name = node.xpath('./div/h1/text()')
item['room_name'] = room_name.extract_first() # 房间租金
room_money = node.xpath('./div[@class="room-price"]/div/span').xpath('string(.)').extract_first() # 有的房子有首月租金,和普通租金不同,因此匹配方式也不同
if room_money:
item['room_money'] = room_money
else:
room_money = node.xpath('./div[@class="room-price hot"]/div/div[@class="room-price-num"]/text()').extract_first()
item['room_money'] = room_money
print(room_money) # 房间面积
room_area = node.xpath('./*/div[@class="room-detail-box"]/div[1]/label/text()').extract_first().split(':')[-1]
item['room_area'] = room_area # 房间编号
room_numb = node.xpath('./*/div[@class="room-detail-box"]/div[2]/label/text()').extract_first().split(':')[-1]
item['room_numb'] = room_numb # 房间户型
room_type = node.xpath('./*/div[@class="room-detail-box"]/div[3]/label/text()').extract_first().split(':')[-1]
item['room_type'] = room_type # 租房方式
rent_type = node.xpath('./*/div[@class="room-detail-box"]/div[3]/label/b/text()').extract_first().split(':')[
-1]
item['rent_type'] = rent_type # 所在楼层
room_floor = node.xpath('./div[@class="room-list-box"]/div[2]/div[2]').xpath('string(.)').extract_first().split(':')[-1]
item['room_floor'] = room_floor # 所在区域
room_loca = node.xpath('./div[@class="room-list-box"]/div[2]/div[3]/label/div/a[1]/text()').extract_first()
item['room_loca'] = room_loca # 所在楼盘
estate_name = node.xpath('./div[@class="room-list-box"]/div[2]/div[3]/label/div/a[3]/text()').extract_first()
item['estate_name'] = estate_name yield item

编写下载中间件

下载中间件中实现两个逻辑:添加随机请求头和url存入redis中

# -*- coding: utf-8 -*-

# Define here the models for your spider middleware
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/spider-middleware.html
import time
import random
import hashlib
import redis
from scrapy.exceptions import IgnoreRequest
from danke.settings import USER_AGENTS as ua class DankeSpiderMiddleware(object):
def process_request(self, request, spider):
"""
给每一个请求随机分配一个代理
:param request:
:param spider:
:return:
"""
user_agent = random.choice(ua)
request.headers['User-Agent'] = user_agent class DankeRedisMiddleware(object):
"""
将第一个页面上的每一个url放入redis的set类型中,防止重复爬取
"""
# 连接redis
def __init__(self):
self.redis = redis.StrictRedis(host='39.106.116.21', port=6379, db=3) def process_request(self, request, spider): # 将来自详情页的链接存到redis中
if request.url.endswith(".html"):
# MD5加密详情页链接
url_md5 = hashlib.md5(request.url.encode()).hexdigest() # 添加到redis,添加成功返回True,否则返回False
result = self.redis.sadd('dk_url', url_md5) # 添加失败,说明链接已爬取,忽略该请求
if not result:
raise IgnoreRequest

数据存储

# -*- coding: utf-8 -*-

from datetime import datetime
import pymysql class DankeSourcePipeline(object):
def process_item(self, item, spider):
item['source'] = spider.name
item['utc_time'] = str(datetime.utcnow())
return item class DankePipeline(object): def __init__(self): self.conn = pymysql.connect(
host='39.106.116.21',
port=3306,
database='***',
user='***',
password='****',
charset='utf8'
)
# 实例一个游标
self.cursor = self.conn.cursor() def process_item(self, item, spider): sql = ("insert into result_latest(标题, 租金, 面积, "
"编号, 户型, 出租方式, 楼层, "
"区域, 楼盘, 抓取时间, 数据来源)"
"values (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)") item = dict(item) data = [
item['room_name'],
item['room_money'],
item['room_area'],
item['room_numb'],
item['room_type'],
item['rent_type'],
item['room_floor'],
item['room_loca'],
item['estate_name'],
item['utc_time'],
item['source'],
]
self.cursor.execute(sql, data)
# 提交数据
self.conn.commit() return item def close_spider(self, spider):
self.cursor.close()
self.conn.close()

实现自动爬取

import os
import time while True:
"""
每隔20*60*60 自动爬取一次,实现自动更新
"""
os.system("scrapy crawl dkgy3")
time.sleep(20*60*60) # from scrapy import cmdline
# cmdline.execute("scrapy crawl dkgy3".split())

完整代码

参见:https://github.com/zInPython/danke

上一篇:wordpress WP-PageNavi分页


下一篇:Jenkins自动部署增加http状态码校验