Karea: https://keras.io/
莫烦keras:https://www.bilibili.com/video/BV1TW411Y7HU?from=search&seid=333955059060890767
Keras&Tensorflow: https://space.bilibili.com/6001266/video?tid=36&keyword=&order=pubdate
吴恩达:https://space.bilibili.com/46880349
https://space.bilibili.com/46880349/channel/index
Keras基础入门教程 深度学习框架
https://space.bilibili.com/6001266/video?tid=36&keyword=&order=pubdate
5. Linear Regression
Keras,加入全连接得时候默认是线性的。
import keras import numpy as np import matplotlib.pyplot as plt # 按顺序构成得模型 from keras.models import Sequential # Dense全连接层 from keras.layers import Dense # 使用怒骂朋友生成100个随机点 x_data = np.random.rand(100) noise = np.random.normal(0,0.01,x_data.shape) y_data = x_data*0.1 + 0.2 + noise # 构建一个顺序模型 model = Sequential() # 在模型中添加一个全连接层 model.add(Dense(units=1,input_dim=1)) # units:dimensionality of the output space. while input_dim:dimensionality of the input space. model.compile(optimizer='sgd', loss='mse') # 训练3001个批次 for step in range(3001): # 每次训练一个批次 cost = model.train_on_batch(x_data,y_data) # 每500个batch,打印一次cost if step % 500 == 0: print("cost:", cost) # 打印权值和偏置值 W, b = model.layers[0].get_weights() print('W:',W, 'b:',b) # x_data输入网络中,得到预测值y_pred y_pred = model.predict(x_data) # 显示随机点 plt.scatter(x_data,y_data) # 显示预测结果 plt.plot(x_data,y_pred,'r--',) plt.show()Linear Regression
6. Nonlinear Regression
Keras,要加入非线性激励,要在模型中加入非线性函数。 加入activation有两种做法:
- 加入activation模块,并用model.add(Activation('tahn'))来加入非线性函数
from keras.layers import Dense,Activation #### method 1 # 在模型中添加一个全连接层,默认情况下是没有激活函数,即线性的,得加入activtion来指定非线性函数。 # 模型: 1-10-1 # units:dimensionality of the output space. while input_dim:dimensionality of the input space. model.add(Dense(units=10,input_dim=1)) model.add(Activation('tanh')) # 可以加input_dim,也可以不加。系统默认识别上一层得结构。 model.add(Dense(units=1)) model.add(Activation('tanh'))Activation Method 1
- 无需加入Activation模块,在原有的model.add函数中加入参数activation=‘relu'
model.add(Dense(units=10,input_dim=1,activation='tanh')) model.add(Dense(units=1,activation='tanh'))Activation Method 2
Nonlinear Regression_01
import numpy as np import matplotlib.pylab as plt # 按顺序构成得模型 from keras.models import Sequential # Dense全连接层 from keras.layers import Dense,Activation from keras.optimizers import SGD # 使用numpy生成200个随机点 x_data = np.linspace(-0.5, 0.5,200) noise = np.random.normal(0,0.02,x_data.shape) y_data = np.square(x_data) + noise # 构建一个顺序模型 model = Sequential() ''' #### method 1 # 在模型中添加一个全连接层,默认情况下是没有激活函数,即线性的,得加入activtion来指定非线性函数。 # 模型: 1-10-1 # units:dimensionality of the output space. while input_dim:dimensionality of the input space. model.add(Dense(units=10,input_dim=1)) model.add(Activation('tanh')) # 可以加input_dim,也可以不加。系统默认识别上一层得结构。 model.add(Dense(units=1)) model.add(Activation('tanh')) ''' #### method 2 model.add(Dense(units=10,input_dim=1,activation='tanh')) model.add(Dense(units=1,activation='tanh')) # sgd得学习率默认是0.01,如果学习率很小得话,用来迭代得次数就很多。我们可以用SGD函数来自己定义。 sgd = SGD(learning_rate=0.3,) model.compile(optimizer=sgd, loss='mse') # 训练3001个批次 for step in range(3001): # 每次训练一个批次 cost = model.train_on_batch(x_data,y_data) # 每500个batch,打印一次cost if step % 500 == 0: print("cost:", cost) # 打印权值和偏置值 W, b = model.layers[0].get_weights() print('W:',W, 'b:',b) # x_data输入网络中,得到预测值y_pred y_pred = model.predict(x_data) # 显示随机点 plt.scatter(x_data,y_data) # 显示预测结果 plt.plot(x_data,y_pred,'r--',) plt.show()Nonlinear Regression
7. MNIST数据集及Softmax
softmax函数也是激活函数,它一般用于分类,我们做分类问题,一般会用到softmax,并把它放到神经网络的最后一层,这样可以把神经网络的输出转化为概率值。
8. MNIST分类程序
mnist分类,使用了model.fit 来训练模型,而不是for loop.还是用了model.evaluate 来评估模型。
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # 载入数据 (x_train,y_train),(x_test,y_test) = mnist.load_data() # 将原来的矩阵(60000,28,28)转换成(60000,784) # -1为任意值,它会自动帮你选取一个合适的值。 /255是做归一化的处理。 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 # 换one_hot格式 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # 创建神经网络,输入784个神经元,输出10个神经元 model = Sequential([ Dense(input_dim=784,units=10,bias_initializer="one",activation='softmax') ]) # 定义opertimizer,loss function,accuracy sgd = SGD(learning_rate=0.2) model.compile(optimizer=sgd, loss='mse',metrics=['accuracy']) # batch_size代表图片的批次,而epochs代表迭代的周期,一个迭代周期是全部图片。 model.fit(x_train,y_train,batch_size=32,epochs=10) # 评估模型 loss, accuracy = model.evaluate(x_test,y_test) print('\ntest loss', loss) print('accuracy', accuracy)MNIST 分类
Output:W[0]的下降速度在0.04,准确率从0.76开始。
%run Keras/2_mnist_crossentropy.py Epoch 1/10 60000/60000 [==============================] - 2s 38us/step - loss: 0.0381 - accuracy: 0.7694 Epoch 2/10 60000/60000 [==============================] - 2s 37us/step - loss: 0.0204 - accuracy: 0.8808 Epoch 3/10 60000/60000 [==============================] - 2s 41us/step - loss: 0.0177 - accuracy: 0.8931 Epoch 4/10 60000/60000 [==============================] - 2s 36us/step - loss: 0.0165 - accuracy: 0.8991 Epoch 5/10 60000/60000 [==============================] - 2s 39us/step - loss: 0.0156 - accuracy: 0.9033 Epoch 6/10 60000/60000 [==============================] - 2s 40us/step - loss: 0.0151 - accuracy: 0.9065 Epoch 7/10 60000/60000 [==============================] - 3s 42us/step - loss: 0.0146 - accuracy: 0.9086 Epoch 8/10 60000/60000 [==============================] - 2s 39us/step - loss: 0.0143 - accuracy: 0.9110 Epoch 9/10 60000/60000 [==============================] - 2s 39us/step - loss: 0.0140 - accuracy: 0.9124 Epoch 10/10 60000/60000 [==============================] - 2s 41us/step - loss: 0.0137 - accuracy: 0.9139 10000/10000 [==============================] - 0s 26us/step W[0]: [-0.03793796 -0.07099154 0.012307 0.00737928 0.04566661 0.07897843 -0.02173948 0.01890512 0.03027461 -0.05212684] b: [0.8575443 1.2337052 1.0053563 0.8201035 1.093483 1.5314213 1.0139054 1.2782687 0.2994195 0.8668173] test loss 0.01302071159919724 accuracy 0.917900025844574Output
9. 交叉熵
Sigmoid function作为激励函数时,y趋于0和1时,它梯度下降的速度很慢,而y趋于0.5时,它的梯度下降最快。这是由于二次代价函数的梯度下降速度与它激励函数的导数(σ'(z))有关,即sigmoid的导数有关。
对于交叉熵代价函数,它的权重值和偏置值得调整与激活函数的导数(σ'(z))无关,而二次代价函数的权值和偏值得调整与激活函数的导数有关,交叉熵的梯度公式是σ(z)-y,这样可以使得我们离目标的越远,即误差越大,参数w和b的调整就越快,训练的速度也就越快。
如果神经元是线性的,那么二次代价函数就是合适的选择,如果输出神经元是S型函数(如 sigmoid,than,relu等),那么比较适合用交叉熵代价函数。
输出层神经元是sigmoid函数,可以采用交叉熵代价函数, 而softmax长作为最后一层,其回归的代价函数是对数似然代价函数。
cross-entropy + Sigmoid:它的输出可以看出它的头几次的下降速度比二次代价函数快一点。
import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD # 载入数据 (x_train,y_train),(x_test,y_test) = mnist.load_data() # 将原来的矩阵(60000,28,28)转换成(60000,784) # -1为任意值,它会自动帮你选取一个合适的值。 /255是做归一化的处理。 x_train = x_train.reshape(x_train.shape[0],-1)/255.0 x_test = x_test.reshape(x_test.shape[0],-1)/255.0 # 换one_hot格式 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # 创建神经网络,输入784个神经元,输出10个神经元 model = Sequential([ Dense(input_dim=784,units=10,bias_initializer="one",activation='softmax') ]) # 定义opertimizer,loss function,accuracy sgd = SGD(learning_rate=0.2) model.compile(optimizer=sgd, loss='categorical_crossentropy',metrics=['accuracy']) # batch_size代表图片的批次,而epochs代表迭代的周期,一个迭代周期是全部图片。 model.fit(x_train,y_train,batch_size=32,epochs=10) # 评估模型 loss, accuracy = model.evaluate(x_test,y_test) print('\ntest loss', loss) print('accuracy', accuracy)cross-entropy&Sigmoid
Output:W的下降速度为0.1,而准确率从0.89开始,明显比二次代价的下降速度和收敛速度快。
Epoch 1/10 60000/60000 [==============================] - 3s 55us/step - loss: 0.3771 - accuracy: 0.8939 Epoch 2/10 60000/60000 [==============================] - 4s 62us/step - loss: 0.3031 - accuracy: 0.9141 Epoch 3/10 60000/60000 [==============================] - 3s 56us/step - loss: 0.2904 - accuracy: 0.9177 Epoch 4/10 60000/60000 [==============================] - 3s 57us/step - loss: 0.2833 - accuracy: 0.9209 Epoch 5/10 60000/60000 [==============================] - 2s 41us/step - loss: 0.2781 - accuracy: 0.9219 Epoch 6/10 60000/60000 [==============================] - 3s 42us/step - loss: 0.2747 - accuracy: 0.9227 Epoch 7/10 60000/60000 [==============================] - 2s 39us/step - loss: 0.2711 - accuracy: 0.9242 Epoch 8/10 60000/60000 [==============================] - 2s 36us/step - loss: 0.2683 - accuracy: 0.9254 Epoch 9/10 60000/60000 [==============================] - 2s 38us/step - loss: 0.2674 - accuracy: 0.9250 Epoch 10/10 60000/60000 [==============================] - 2s 36us/step - loss: 0.2653 - accuracy: 0.9265 10000/10000 [==============================] - 0s 25us/step W[0]: [-0.06596227 0.05133935 -0.03020713 0.05072761 -0.01564101 0.062588 0.05685071 -0.05082045 -0.01905373 0.02436206] b: [ 0.0500211 1.7270411 1.2487147 0.43417516 1.051346 3.2956278 0.692315 2.344586 -1.3288382 0.48500693] test loss 0.28017732598781586 accuracy 0.9203000068664551Output