Dataset
官方的dataset
例子
import torchvision.datasets from torch.utils.tensorboard import SummaryWriter dataset_transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor() ]) train_set = torchvision.datasets.CIFAR10(root=‘./dataset‘,train=True,transform=dataset_transform,download=True) test_set = torchvision.datasets.CIFAR10(root=‘./dataset‘,train=False,transform=dataset_transform,download=True) print(test_set[0]) writer = SummaryWriter("log") for i in range(10): img,target = test_set[i] print(type(img),img) print(type(target),target) writer.add_image("test_set",img,i) writer.close()
class CIFAR10(VisionDataset): """`CIFAR10 <https://www.cs.toronto.edu/~kriz/cifar.html>`_ Dataset. Args: root (string): Root directory of dataset where directory ``cifar-10-batches-py`` exists or will be saved to if download is set to True. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """
该数据集重写了__getitem__函数,所以可以使用下标访问元素
def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target
DataLoader
例子
import torchvision.datasets from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter dataset_transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor() ]) train_set = torchvision.datasets.CIFAR10(root=‘./dataset‘,train=True,transform=dataset_transform,download=True) test_set = torchvision.datasets.CIFAR10(root=‘./dataset‘,train=False,transform=dataset_transform,download=True) writer = SummaryWriter("dataLoader") test_loader = DataLoader(dataset=test_set,batch_size=64,shuffle=True,num_workers=0,drop_last=False) step = 0 for data in test_loader: imgs,targets = data writer.add_images("test_data",imgs,step) step += 1 writer.close()
class DataLoader(Generic[T_co]): r""" Data loader. Combines a dataset and a sampler, and provides an iterable over the given dataset. The :class:`~torch.utils.data.DataLoader` supports both map-style and iterable-style datasets with single- or multi-process loading, customizing loading order and optional automatic batching (collation) and memory pinning. See :py:mod:`torch.utils.data` documentation page for more details. Args: dataset (Dataset): dataset from which to load the data. batch_size (int, optional): how many samples per batch to load (default: ``1``). shuffle (bool, optional): set to ``True`` to have the data reshuffled at every epoch (default: ``False``). sampler (Sampler or Iterable, optional): defines the strategy to draw samples from the dataset. Can be any ``Iterable`` with ``__len__`` implemented. If specified, :attr:`shuffle` must not be specified. batch_sampler (Sampler or Iterable, optional): like :attr:`sampler`, but returns a batch of indices at a time. Mutually exclusive with :attr:`batch_size`, :attr:`shuffle`, :attr:`sampler`, and :attr:`drop_last`. num_workers (int, optional): how many subprocesses to use for data loading. ``0`` means that the data will be loaded in the main process. (default: ``0``) collate_fn (callable, optional): merges a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a map-style dataset. pin_memory (bool, optional): If ``True``, the data loader will copy Tensors into CUDA pinned memory before returning them. If your data elements are a custom type, or your :attr:`collate_fn` returns a batch that is a custom type, see the example below. drop_last (bool, optional): set to ``True`` to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If ``False`` and the size of dataset is not divisible by the batch size, then the last batch will be smaller. (default: ``False``) timeout (numeric, optional): if positive, the timeout value for collecting a batch from workers. Should always be non-negative. (default: ``0``) worker_init_fn (callable, optional): If not ``None``, this will be called on each worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as input, after seeding and before data loading. (default: ``None``) generator (torch.Generator, optional): If not ``None``, this RNG will be used by RandomSampler to generate random indexes and multiprocessing to generate `base_seed` for workers. (default: ``None``) prefetch_factor (int, optional, keyword-only arg): Number of samples loaded in advance by each worker. ``2`` means there will be a total of 2 * num_workers samples prefetched across all workers. (default: ``2``) persistent_workers (bool, optional): If ``True``, the data loader will not shutdown the worker processes after a dataset has been consumed once. This allows to maintain the workers `Dataset` instances alive. (default: ``False``) .. warning:: If the ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an unpicklable object, e.g., a lambda function. See :ref:`multiprocessing-best-practices` on more details related to multiprocessing in PyTorch. .. warning:: ``len(dataloader)`` heuristic is based on the length of the sampler used. When :attr:`dataset` is an :class:`~torch.utils.data.IterableDataset`, it instead returns an estimate based on ``len(dataset) / batch_size``, with proper rounding depending on :attr:`drop_last`, regardless of multi-process loading configurations. This represents the best guess PyTorch can make because PyTorch trusts user :attr:`dataset` code in correctly handling multi-process loading to avoid duplicate data. However, if sharding results in multiple workers having incomplete last batches, this estimate can still be inaccurate, because (1) an otherwise complete batch can be broken into multiple ones and (2) more than one batch worth of samples can be dropped when :attr:`drop_last` is set. Unfortunately, PyTorch can not detect such cases in general. See `Dataset Types`_ for more details on these two types of datasets and how :class:`~torch.utils.data.IterableDataset` interacts with `Multi-process data loading`_. .. warning:: See :ref:`reproducibility`, and :ref:`dataloader-workers-random-seed`, and :ref:`data-loading-randomness` notes for random seed related questions. """