P1057 金明的预算方案
时间: 1000ms / 空间: 131072KiB / Java类名: Main
背景
NOIP2006 提高组 第二道
描述
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
主件 附件
电脑 打印机,扫描仪
书柜 图书
书桌 台灯,文具
工作椅 无
如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有0个、1个或2个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1~5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是10元的整数倍)。他希望在不超过N元(可以等于N元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第j件物品的价格为v[j],重要度为w[j],共选中了k件物品,编号依次为j1,j2,……,jk,则所求的总和为:
v[j1]*w[j1]+v[j2]*w[j2]+ …+v[jk]*w[jk]。(其中*为乘号)
请你帮助金明设计一个满足要求的购物单。
输入格式
输入文件budget.in 的第1行,为两个正整数,用一个空格隔开:
N m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
N m
(其中N(<32000)表示总钱数,m(<60)为希望购买物品的个数。)
从第2行到第m+1行,第j行给出了编号为j-1的物品的基本数据,每行有3个非负整数
v p q
(其中v表示该物品的价格(v<10000),p表示该物品的重要度(1~5),q表示该物品是主件还是附件。如果q=0,表示该物品为主件,如果q>0,表示该物品为附件,q是所属主件的编号)
输出格式
输出文件budget.out只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。
测试样例1
输入
1000 5
800 2 0
400 5 1
300 5 1
400 3 0
500 2 0
输出
2200
备注
各个测试点1s
题意:中文题意
题解:考虑本题特殊条件1.附件没有附件 2.每个主件最多有两个附件
那么对于每个主件只有5种情况
1.什么都不买
2.只买主件
3.买主件和两个附件
4.买主件和第一个附件
5.买主件和第二个附件
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<queue>
#define ll __int64
using namespace std;
int n,m;
int a,b,c;
struct node
{
int w;
int s;
int w1,s1;
int w2,s2;
} N[];
int used[];
int dp[];
int main()
{
memset(used,,sizeof(used));
memset(N,,sizeof(N));
memset(dp,,sizeof(dp));
scanf("%d %d",&n,&m);
for(int i=; i<=m; i++)
{
scanf("%d %d %d",&a,&b,&c);
if(c==)
{
N[i].w=a;
N[i].s=b;
}
else
{
if(used[c]==)
{
N[c].w1=a;
N[c].s1=b;
used[c]=;
}
else
{
N[c].w2=a;
N[c].s2=b;
}
}
}
for(int i=; i<=m; i++)
{
for(int k=n; k>=; k--)
{
if(k>=(N[i].w+N[i].w1+N[i].w2))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w1+N[i].w2)]+N[i].w*N[i].s+N[i].w1*N[i].s1+N[i].w2*N[i].s2);
if(k>=(N[i].w+N[i].w1))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w1)]+N[i].w*N[i].s+N[i].w1*N[i].s1);
if(k>=(N[i].w+N[i].w2))
dp[k]=max(dp[k],dp[k-(N[i].w+N[i].w2)]+N[i].w*N[i].s+N[i].w2*N[i].s2);
if(k>=N[i].w)
dp[k]=max(dp[k],dp[k-N[i].w]+N[i].w*N[i].s);
}
}
cout<<dp[n]<<endl;
return ;
}