==============
sdf={'rkey':[1,2,3,2],'name':['rkey1','rkey2','rkey3','rkey4']}
sdf2={'lkey':[1,2,3],'name':['lsdf1','lsdf2','lsdf3']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf3','lsdf3']}
cc=DataFrame(sdf)
cc2=DataFrame(sdf2)
cc3=DataFrame(sdf3)
print cc.merge(cc2,left_on='rkey',right_on='lkey')
name_x rkey lkey name_y
0 rkey1 1 1 lsdf1
1 rkey2 2 2 lsdf2
2 rkey4 2 2 lsdf2
3 rkey3 3 3 lsdf3
print cc2.merge(cc3,on='lkey')
lkey name_x name_y
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3
# 指定附加在重名列上的字符串
print cc2.merge(cc3,on='lkey',suffixes=('_left','_right'))
lkey name_left name_right
0 2 lsdf2 lsdf3
1 3 lsdf3 lsdf3
======通过索引和列进行合并=====================
sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'lkey':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=[1,2,3])
cc3=DataFrame(sdf3)
print cc2.merge(cc3,left_index=True,right_on='lkey')
=======================
sdf=Series([11,22,33])
sdf2=Series([44,55,66])
print pd.concat([sdf,sdf2])
print pd.concat([sdf,sdf2],axis=1)
=============
sdf2={'tst2':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst3':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3])
print pd.concat([cc2,cc3],axis=1)
===========
print pd.concat([cc2,cc3],axis=1,join='inner')
print pd.concat([cc2,cc3],join='inner')
==============
sdf2={'tst':[1,2,3],'name':['lsdf2','lsdf22','lsdf32']}
sdf3={'tst':[11,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print pd.concat([cc2,cc3],ignore_index=True)
=========用参数对象中的数据为调用者对象的缺失数据打补丁==========
sdf2={'tst':[11,np.nan,33],'name':[np.nan,'lsdf22','lsdf22']}
sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc2=DataFrame(sdf2,index=['b','c','d'])
cc3=DataFrame(sdf3,index=['a','b','c'])
print cc2.combine_first(cc3)
======================
sdf3={'tst':[1,2,3],'name':['lsdf3','lsdf23','lsdf33']}
cc3=DataFrame(sdf3,index=['a','b','c'])
# 指定附加在重名列上的字符串
print cc3.replace(3,100) #替换一个值
print cc3.replace([1,3],100) #替换多个值
print cc3.replace({1:100,3:300}) #不同值进行不同替换
================
df=pd.DataFrame({'name':['aa','bb','cc'],'age':[,,]})
ss=df['age']
print ss Name: age, dtype: int64
索引ss的某一个值:ss[0]
索引ss的某几个值:ss[[0,1]]
切片:ss[1:]
==========
s6=pd.Series(np.array([,,,,,]),index=['a','b','c','d','e','f'])
s7=pd.Series(np.array([,,,,,]),index=['a','c','g','b','d','f'])
#s6中不存在g索引,s7中不存在e索引,所以数据运算会产生两个缺失值NaN。
print(s6+s7)
dtype: int32
a 22.0
b 30.0
c 31.0
d 44.0
e NaN
f 96.0
g NaN
#可以注意到这里的算术运算自动实现了两个序列的自动对齐
#对于数据框的对齐,不仅是行索引的自动对齐,同时也会对列索引进行自动对齐,数据框相当于二维数组的推广
print(s6/s7)
dtype: float64
a 0.833333
b 1.000000
c 1.818182
d 2.142857
e NaN
f 5.000000
g NaN
dtype: float64
获取DataFrame的多行:test_data.iloc[[0,2,4,5,7]]
按某一列的值进行过滤:test_data[test_data['age']==51]
对多列进行过滤:test_data[(test_data['age']==51) & (test_data['job']>=5)] ---圆括号括起来+ &
过滤完后,只留下某几列:test_data[(test_data['age']==51) & (test_data['job']>=5)][['education','housing','loan','contact','poutcome']]
查询指定的行:test_data.loc[[0,2,4,5,7]]
查询指定的列:test_data[['age','job','marital']]
查询指定的行和列:test_data.loc[[0,2,4,5,7],['age','job','marital']]