在一元回归分析中,如果自变量x和因变量y之间的关系是非线性的,在找不到合适的函数曲线来拟合的情况下,可以采用一元多项式回归。如果自变量不止一个,则采用多元多项式回归。
多项式回归可以处理相当一类非线性问题,因为任意函数都可以分段,用多项式来逼近。
使用的假设函数是一元一次方程,也就是二维平面上的一条直线。但是很多时候可能会遇到直线方程无法很好的拟合数据的情况,这个时候可以尝试使用多项式回归。多项式回归中,加入了特征的更高次方(例如平方项或立方项),也相当于增加了模型的*度,用来捕获数据中非线性的变化。添加高阶项的时候,也增加了模型的复杂度。随着模型复杂度的升高,模型的容量以及拟合数据的能力增加,可以进一步降低训练误差,但导致过拟合的风险也随之增加。
多项式回归的一般形式
损失函数
1. 多项式回归的实现
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
1.1 直线方程拟合
data = np.array([[ -2.95507616, 10.94533252],
[ -0.44226119, 2.96705822],
[ -2.13294087, 6.57336839],
[ 1.84990823, 5.44244467],
[ 0.35139795, 2.83533936],
[ -1.77443098, 5.6800407 ],
[ -1.8657203 , 6.34470814],
[ 1.61526823, 4.77833358],
[ -2.38043687, 8.51887713],
[ -1.40513866, 4.18262786]])
m = data.shape[0] # 样本大小
X = data[:, 0].reshape(-1, 1) # 将array转换成矩阵
y = data[:, 1].reshape(-1, 1)
plt.plot(X, y, "b.")
plt.xlabel('X')
plt.ylabel('y')
plt.show()
#下面先用直线方程拟合上面的数据点:
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print(lin_reg.intercept_, lin_reg.coef_) # [ 4.97857827] [[-0.92810463]]
X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)
y_plot = np.dot(X_plot, lin_reg.coef_.T) + lin_reg.intercept_
plt.plot(X_plot, y_plot, 'r-')
plt.plot(X, y, 'b.')
plt.xlabel('X')
plt.ylabel('y')
plt.savefig('regu-2.png', dpi=200)
1.2 使用多项式方程
为了拟合2次方程,需要有特征x^2的数据,这里可以使用函数"PolynomialFeatures
"来获得:
poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
print(X_poly)
lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
print(lin_reg.intercept_, lin_reg.coef_) # [ 2.60996757] [[-0.12759678 0.9144504 ]]
X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)
X_plot_poly = poly_features.fit_transform(X_plot)
y_plot = np.dot(X_plot_poly, lin_reg.coef_.T) + lin_reg.intercept_
plt.plot(X_plot, y_plot, 'r-')
plt.plot(X, y, 'b.')
plt.show()
得到了训练后的参数,即多项式方程为h=−0.13x+0.91x^2+2.61