1002 数塔取数问题
一个高度为N的由正整数组成的三角形,从上走到下,求经过的数字和的最大值。 每次只能走到下一层相邻的数上,例如从第3层的6向下走,只能走到第4层的2或9上。 5 8 4 3 6 9 7 2 9 5 例子中的最优方案是:5 + 8 + 6 + 9 = 28输入
第1行:N,N为数塔的高度。(2 <= N <= 500) 第2 - N + 1行:每行包括1层数塔的数字,第2行1个数,第3行2个数......第k+1行k个数。数与数之间用空格分隔(0 <= A[i] <= 10^5) 。
输出
输出最大值
输入样例
4 5 8 4 3 6 9 7 2 9 5
输出样例
28
思路:如果从上往下进行深搜会超时, 从上往下每一步寻求最优解其实具有后效性,则从下往上更新,则每次加上其下一层相邻两个数的最大值来更新其本身,到达最顶层时就是最终答案。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define N 550
int main()
{
int n;
int dp[N][N];
scanf("%d", &n);
for(int i = 0; i < n; i++)
for(int j = 0; j <= i; j++)
scanf("%d", &dp[i][j]);
for(int i = n-1; i >= 0; i--)
for(int j = 0; j <= i; j++)
dp[i][j] = max(dp[i+1][j], dp[i+1][j+1]) + dp[i][j];
printf("%d\n", dp[0][0]);
return 0;
}