PyTorch学习笔记(四):多层感知机
多层感知机
线性回归和softmax回归都是单层神经网络。然而深度学习主要关注多层模型。以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。
隐藏层
多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。
在图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,图3.3中的多层感知机的层数为2。由图可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。
具体来说,给定一个小批量样本 X ∈ R n × d \boldsymbol{X} \in \mathbb{R}^{n \times d} X∈Rn×d,其批量大小为 n n n,输入个数为 d d d。假设多层感知机只有一个隐藏层,其中隐藏单元个数为 h h h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为 H \boldsymbol{H} H,有 H ∈ R n × h \boldsymbol{H} \in \mathbb{R}^{n \times h} H∈Rn×h。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为 W h ∈ R d × h \boldsymbol{W}_h \in \mathbb{R}^{d \times h} Wh∈Rd×h和 b h ∈ R 1 × h \boldsymbol{b}_h \in \mathbb{R}^{1 \times h} bh∈R1×h,输出层的权重和偏差参数分别为 W o ∈ R h × q \boldsymbol{W}_o \in \mathbb{R}^{h \times q} Wo∈Rh×q和 b o ∈ R 1 × q \boldsymbol{b}_o \in \mathbb{R}^{1 \times q} bo∈R1×q。
我们先来看一种含单隐藏层的多层感知机的设计。其输出 O ∈ R n × q \boldsymbol{O} \in \mathbb{R}^{n \times q} O∈Rn×q的计算为
H = X W h + b h , O = H W o + b o , \begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=XWh+bh,=HWo+bo,
也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o . \boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o. O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo.
从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为 W h W o \boldsymbol{W}_h\boldsymbol{W}_o WhWo,偏差参数为 b h W o + b o \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o bhWo+bo。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。
激活函数
上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。下面我们介绍几个常用的激活函数。
ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素 x x x,该函数定义为
ReLU ( x ) = max ( x , 0 ) . \text{ReLU}(x) = \max(x, 0). ReLU(x)=max(x,0).
可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot
。
%matplotlib inline
import torch
import numpy as np
import matplotlib.pylab as plt
from IPython import display
def use_svg_display():
""""使用svg格式显示图形"""
display.set_matplotlib_formats('svg')
def set_figsize(figsize=(3.5, 2.5)):
use_svg_display()
# 设置图的尺寸
plt.rcParams['figure.figsize'] = figsize
def xyplot(x_vals, y_vals, name):
set_figsize(figsize=(5, 2.5))
plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
plt.xlabel('x')
plt.ylabel(name + '(x)')
通过Tensor
提供的relu
函数来绘制ReLU函数。可以看到,该激活函数是一个两段线性函数。
x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
y = x.relu()
xyplot(x, y, 'relu')
显然,当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0。下面绘制ReLU函数的导数。
y.sum().backward()
xyplot(x, x.grad, 'grad of relu')
sigmoid函数
sigmoid函数可以将元素的值变换到0和1之间:
sigmoid ( x ) = 1 1 + exp ( − x ) . \text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}. sigmoid(x)=1+exp(−x)1.
sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。但其可以利用它值域在0到1之间这一特性来控制信息在神经网络中的流动,在此暂不讨论。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。
y = x.sigmoid()
xyplot(x, y, 'sigmoid')
依据链式法则,sigmoid函数的导数
sigmoid ′ ( x ) = sigmoid ( x ) ( 1 − sigmoid ( x ) ) . \text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right). sigmoid′(x)=sigmoid(x)(1−sigmoid(x)).
下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of sigmoid')
tanh函数
tanh(双曲正切)函数可以将元素的值变换到-1和1之间:
tanh ( x ) = 1 − exp ( − 2 x ) 1 + exp ( − 2 x ) . \text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}. tanh(x)=1+exp(−2x)1−exp(−2x).
我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。
y = x.tanh()
xyplot(x, y, 'tanh')
依据链式法则,tanh函数的导数
tanh ′ ( x ) = 1 − tanh 2 ( x ) . \text{tanh}'(x) = 1 - \text{tanh}^2(x). tanh′(x)=1−tanh2(x).
下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
x.grad.zero_()
y.sum().backward()
xyplot(x, x.grad, 'grad of tanh')
多层感知机
多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例,多层感知机按以下方式计算输出:
H = ϕ ( X W h + b h ) , O = H W o + b o , \begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned} HO=ϕ(XWh+bh),=HWo+bo,
其中
ϕ
\phi
ϕ表示激活函数。在分类问题中,我们可以对输出
O
\boldsymbol{O}
O做softmax运算,并使用softmax回归中的交叉熵损失函数。
在回归问题中,我们将输出层的输出个数设为1,并将输出
O
\boldsymbol{O}
O直接提供给线性回归中使用的平方损失函数。
小结
- 多层感知机在输出层与输入层之间加入了一个或多个全连接隐藏层,并通过激活函数对隐藏层输出进行变换。
- 常用的激活函数包括ReLU函数、sigmoid函数和tanh函数。
PyTorch从零开始实现多层感知机
我们已经了解了多层感知机的原理。首先导入实现所需的包或模块。
import torch
import numpy as np
import sys
import torchvision
获取和读取数据
这里继续使用Fashion-MNIST数据集。我们将使用多层感知机对图像进行分类。
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
""":下载fashion mnist数据集,然后加载到内存中。"""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
batch_size = 256
train_iter, test_iter = load_data_fashion_mnist(batch_size)
定义模型参数
Fashion-MNIST数据集中图像形状为 28 × 28 28 \times 28 28×28,类别数为10。我们依然使用长度为 28 × 28 = 784 28 \times 28 = 784 28×28=784 的向量表示每一张图像。因此,输入个数为784,输出个数为10。实验中,我们设超参数隐藏单元个数为256。
num_inputs, num_outputs, num_hiddens = 784, 10, 256
W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
b1 = torch.zeros(num_hiddens, dtype=torch.float)
W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
b2 = torch.zeros(num_outputs, dtype=torch.float)
params = [W1, b1, W2, b2]
for param in params:
param.requires_grad_(requires_grad=True)
定义激活函数
这里我们使用基础的max
函数来实现ReLU,而非直接调用relu
函数。
def relu(X):
return torch.max(input=X, other=torch.tensor(0.0))
定义模型
同softmax回归一样,我们通过view
函数将每张原始图像改成长度为num_inputs
的向量。然后我们实现多层感知机的计算表达式。
def net(X):
X = X.view((-1, num_inputs))
H = relu(torch.matmul(X, W1) + b1)
return torch.matmul(H, W2) + b2
定义损失函数
为了得到更好的数值稳定性,我们直接使用PyTorch提供的包括softmax运算和交叉熵损失计算的函数。
loss = torch.nn.CrossEntropyLoss()
训练模型
训练多层感知机的步骤和训练softmax回归的步骤没什么区别。我们在这里设超参数迭代周期数为5,学习率为100.0。
注:由于《动手学深度学习》的mxnet中的
SoftmaxCrossEntropyLoss
在反向传播的时候相对于沿batch维求和了,而PyTorch默认的是求平均,所以用PyTorch计算得到的loss比mxnet小很多(大概是maxnet计算得到的1/batch_size这个量级),所以反向传播得到的梯度也小很多,所以为了得到差不多的学习效果,我们把学习率调得成原书的约batch_size倍,原书的学习率为0.5,这里设置成100.0。(之所以这么大,应该是sgd函数在更新的时候除以了batch_size,其实PyTorch在计算loss的时候已经除过一次了,sgd这里应该不用除了)
def sgd(params, lr, batch_size):
# 为了和《动手学深度学习》保持一致,这里除以了batch_size,但是应该是不用除的,因为一般用PyTorch计算loss时就默认已经
# 沿batch维求了平均了。
for param in params:
param.data -= lr * param.grad / batch_size # 注意这里更改param时用的param.data
def evaluate_accuracy(data_iter, net):
acc_sum, n = 0.0, 0
for X, y in data_iter:
acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()
n += y.shape[0]
return acc_sum / n
def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
num_epochs, lr = 5, 100.0
train(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)
epoch 1, loss 0.0031, train acc 0.711, test acc 0.745
epoch 2, loss 0.0019, train acc 0.824, test acc 0.780
epoch 3, loss 0.0017, train acc 0.845, test acc 0.785
epoch 4, loss 0.0015, train acc 0.855, test acc 0.854
epoch 5, loss 0.0015, train acc 0.864, test acc 0.830
小结
- 可以通过手动定义模型及其参数来实现简单的多层感知机,但只限于帮助理解其原理逻辑,在实际过程中,一般使用框架模块实现。
- 当多层感知机的层数较多时,从零实现方法会显得较烦琐,例如在定义模型参数的时候。
PyTorch模块实现多层感知机
下面我们使用PyTorch模块来实现多层感知机。首先导入所需的包或模块。
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
定义模型
和softmax回归唯一的不同在于,我们多加了一个全连接层作为隐藏层。它的隐藏单元个数为256,并使用ReLU函数作为激活函数。
num_inputs, num_outputs, num_hiddens = 784, 10, 256
class FlattenLayer(torch.nn.Module): # 全连接层
def __init__(self):
super(FlattenLayer, self).__init__()
def forward(self, x): # x shape: (batch, *, *, ...)
return x.view(x.shape[0], -1)
net = nn.Sequential(
FlattenLayer(),
nn.Linear(num_inputs, num_hiddens),
nn.ReLU(),
nn.Linear(num_hiddens, num_outputs),
)
for params in net.parameters():
init.normal_(params, mean=0, std=0.01)
读取数据并训练模型
我们使用训练softmax回归几乎相同的步骤来读取数据并训练模型。
注:这里使用的是PyTorch的SGD
batch_size = 256
def load_data_fashion_mnist(batch_size, resize=None, root='~/Datasets/FashionMNIST'):
""":下载fashion mnist数据集,然后加载到内存中。"""
trans = []
if resize:
trans.append(torchvision.transforms.Resize(size=resize))
trans.append(torchvision.transforms.ToTensor())
transform = torchvision.transforms.Compose(trans)
mnist_train = torchvision.datasets.FashionMNIST(root=root, train=True, download=True, transform=transform)
mnist_test = torchvision.datasets.FashionMNIST(root=root, train=False, download=True, transform=transform)
if sys.platform.startswith('win'):
num_workers = 0 # 0表示不用额外的进程来加速读取数据
else:
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
return train_iter, test_iter
train_iter, test_iter = load_data_fashion_mnist(batch_size)
loss = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
num_epochs = 5
def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
params=None, lr=None, optimizer=None):
for epoch in range(num_epochs):
train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
for X, y in train_iter:
y_hat = net(X)
l = loss(y_hat, y).sum()
# 梯度清零
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
if optimizer is None:
sgd(params, lr, batch_size)
else:
optimizer.step()
train_l_sum += l.item()
train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
n += y.shape[0]
test_acc = evaluate_accuracy(test_iter, net)
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
train(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
epoch 1, loss 0.0032, train acc 0.692, test acc 0.771
epoch 2, loss 0.0019, train acc 0.814, test acc 0.800
epoch 3, loss 0.0016, train acc 0.846, test acc 0.803
epoch 4, loss 0.0015, train acc 0.856, test acc 0.823
epoch 5, loss 0.0015, train acc 0.862, test acc 0.848
小结
- 通过PyTorch模块可以更简洁地实现多层感知机。
参考
[1] 阿斯顿·张(Aston Zhang),李沐(Mu Li),[美] 扎卡里·C.立顿(Zachary C.Lipton) 等. 动手学深度学习. 北京: 人民邮电出版社,2019
[2] https://pytorch.org/docs/stable/index.html
[3] https://github.com/ShusenTang/Dive-into-DL-PyTorch