Image Super Resolution using ESRGAN ---- TF Hub

image_enhancing

This colab demonstrates use of TensorFlow Hub Module for Enhanced Super Resolution Generative Adversarial Network for image enhancing

Model trained on DIV2K Dataset (on bicubically downsampled images) on image patches of size 128 x 128

import os
import time
from PIL import Image
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import matplotlib.pyplot as plt

os.environ["TFHUB_DOWNLOAD_PROGRESS"] = "True"

# Declaring Constants
IMAGE_PATH = "original.png"
SAVED_MODEL_PATH = "https://tfhub.dev/captain-pool/esrgan-tf2/1"


def preprocess_image(image_path):
    """ Loads image from path and preprocesses to make it model ready
      Args:
        image_path: Path to the image file
  """
    hr_image = tf.image.decode_image(tf.io.read_file(image_path))
    # If PNG, remove the alpha channel. The model only supports
    # images with 3 color channels.
    if hr_image.shape[-1] == 4:
        hr_image = hr_image[..., :-1]
    hr_size = (tf.convert_to_tensor(hr_image.shape[:-1]) // 4) * 4
    hr_image = tf.image.crop_to_bounding_box(hr_image, 0, 0, hr_size[0], hr_size[1])
    hr_image = tf.cast(hr_image, tf.float32)
    return tf.expand_dims(hr_image, 0)


def save_image(image, filename):
    """
    Saves unscaled Tensor Images.
    Args:
      image: 3D image tensor. [height, width, channels]
      filename: Name of the file to save to.
  """
    if not isinstance(image, Image.Image):
        image = tf.clip_by_value(image, 0, 255)
        image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
    image.save("%s.jpg" % filename)
    print("Saved as %s.jpg" % filename)


def plot_image(image, title=""):
    """
    Plots images from image tensors.
    Args:
      image: 3D image tensor. [height, width, channels].
      title: Title to display in the plot.
  """
    image = np.asarray(image)
    image = tf.clip_by_value(image, 0, 255)
    image = Image.fromarray(tf.cast(image, tf.uint8).numpy())
    plt.imshow(image)
    plt.axis("off")
    plt.title(title)


hr_image = preprocess_image(IMAGE_PATH)

# Plotting Original Resolution image
plot_image(tf.squeeze(hr_image), title="Original Image")
save_image(tf.squeeze(hr_image), filename="Original Image")

model = hub.load(SAVED_MODEL_PATH)
start = time.time()
fake_image = model(hr_image)
fake_image = tf.squeeze(fake_image)
print("Time Taken: %f" % (time.time() - start))

# Plotting Super Resolution Image
plot_image(tf.squeeze(fake_image), title="Super Resolution")
save_image(tf.squeeze(fake_image), filename="Super Resolution")

IMAGE_PATH = "test.jpg"


# Defining helper functions
def downscale_image(image):
    """
      Scales down images using bicubic downsampling.
      Args:
          image: 3D or 4D tensor of preprocessed image
  """
    image_size = []
    if len(image.shape) == 3:
        image_size = [image.shape[1], image.shape[0]]
    else:
        raise ValueError("Dimension mismatch. Can work only on single image.")

    image = tf.squeeze(
        tf.cast(
            tf.clip_by_value(image, 0, 255), tf.uint8))

    lr_image = np.asarray(
        Image.fromarray(image.numpy())
            .resize([image_size[0] // 4, image_size[1] // 4],
                    Image.BICUBIC))

    lr_image = tf.expand_dims(lr_image, 0)
    lr_image = tf.cast(lr_image, tf.float32)
    return lr_image


hr_image = preprocess_image(IMAGE_PATH)
lr_image = downscale_image(tf.squeeze(hr_image))
# Plotting Low Resolution Image
plot_image(tf.squeeze(lr_image), title="Low Resolution")

model = hub.load(SAVED_MODEL_PATH)
start = time.time()
fake_image = model(lr_image)
fake_image = tf.squeeze(fake_image)
print("Time Taken: %f" % (time.time() - start))

plot_image(tf.squeeze(fake_image), title="Super Resolution")
# Calculating PSNR wrt Original Image
psnr = tf.image.psnr(
    tf.clip_by_value(fake_image, 0, 255),
    tf.clip_by_value(hr_image, 0, 255), max_val=255)
print("PSNR Achieved: %f" % psnr)

plt.rcParams['figure.figsize'] = [15, 10]
fig, axes = plt.subplots(1, 3)
fig.tight_layout()
plt.subplot(131)
plot_image(tf.squeeze(hr_image), title="Original")
plt.subplot(132)
fig.tight_layout()
plot_image(tf.squeeze(lr_image), "x4 Bicubic")
plt.subplot(133)
fig.tight_layout()
plot_image(tf.squeeze(fake_image), "Super Resolution")
plt.savefig("ESRGAN_DIV2K.jpg", bbox_inches="tight")
print("PSNR: %f" % psnr)

Image Super Resolution using ESRGAN ---- TF Hub

Image Super Resolution using ESRGAN ---- TF Hub

上一篇:Jmeter分布式压测


下一篇:ctf-hub 进阶