UVa 10237 - Bishops (dp)

题目链接:https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=14&page=show_problem&problem=1178

将棋盘旋转 \(45°\) 后,对角线转化为行和列,而奇数行和偶数行的棋盘互不影响,所以我们将奇数行和偶数行的棋盘拆开算

\(dp[i][j]\) 表示前 \(i\) 行放了 \(j\) 个象的方案数,发现每行的长度不一样,但每个长度有两个且长度从 \(1\)\(n\) 连续,每种长度有两种(第 \(n\) 行可能一种),而且行的排列方式对答案没有影响,所以可以按长度从小到大枚举行计算答案

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int maxn = 55;

int n, k;
ll f[maxn][maxn], g[maxn][maxn];

ll read(){ ll s = 0, f = 1; char ch = getchar(); while(ch < ‘0‘ || ch > ‘9‘){ if(ch == ‘-‘) f = -1; ch = getchar(); } while(ch >= ‘0‘ && ch <= ‘9‘){ s = s * 10 + ch - ‘0‘; ch = getchar(); } return s * f; }

int main(){
	while(scanf("%d%d", &n, &k) == 2 && n){
		memset(f, 0, sizeof(f));
		memset(g, 0, sizeof(g));
		
		f[0][0] = 1;
		for(int i = 1 ; i <= n ; ++i){
			int len = i - !(i&1);
			f[i][0] = 1;
			for(int j = 1 ; j <= len && j <= k ; ++j){
				f[i][j] = f[i-1][j] + f[i-1][j-1] * (len-j+1);
			}
		}
			
		g[1][0] = 1;
		for(int i = 2 ; i <= n ; ++i){
			int len = i - (i&1);
			g[i][0] = 1;
			for(int j = 1 ; j <= len && j <= k ; ++j){
				g[i][j] = g[i-1][j] + g[i-1][j-1] * (len-j+1);
			}
		}
			
		ll ans = 0;
		for(int i = 0 ; i <= k ; ++i){
			ans += f[n][i] * g[n][k-i];
		}
		printf("%lld\n", ans);
	}
	
	return 0;
}

UVa 10237 - Bishops (dp)

上一篇:百度之星初赛(全)


下一篇:【JZOJ7217】数学