作业Day4

Q1:定义无向网络

Definition: An undirected net is a tuple G = ( V , w ) G=(\mathbf V,w) G=(V,w),where V \mathbf V Vis the set of nodes,and w : V × V → R w:\mathbf V\times \mathbf V\to\R w:V×V→R is the weight function where w ( v i , v j ) w(v_i,v_j) w(vi​,vj​) is the weight of the arc ⟨ v i , v j ⟩ \langle v_i,v_j\rangle ⟨vi​,vj​⟩ and w ( v i , v j ) = w ( v j , v i ) w(v_i,v_j)=w(v_j,v_i) w(vi​,vj​)=w(vj​,vi​), v i , v j ∈ V v_i,v_j\in\mathbf V vi​,vj​∈V

Q2.1:自己画一棵树, 将其元组各部分写出来

作业Day4
A tree is a triple T = ( V , r , p ) T = (\mathbf{V}, r, p) T=(V,r,p)
In this tree, V = { a , b , c , d , e , f , g } , r = a \mathbf V=\{a,b,c,d,e,f,g\},r=a V={a,b,c,d,e,f,g},r=a,
p ( f ) = p ( g ) = d , p ( e ) = c , p ( d ) = b , p ( b ) = p ( c ) = a , p ( a ) = ϕ p(f)=p(g)=d,p(e)=c,p(d)=b,p(b)=p(c)=a,p(a)=\phi p(f)=p(g)=d,p(e)=c,p(d)=b,p(b)=p(c)=a,p(a)=ϕ

Q3:针对该树, 将代码中的变量值写出来 (特别是 parent 数组).

public class Tree {
	//节点数. 表示节点 v_0 至 v_{n-1}.
	int n;
	//根节点. 0 至 n-1.
	int root;
	//父节点.
	char[] parent;

	/**
	 * 构造一棵树, 第一个节点为根节点, 其余节点均为其直接子节点, 也均为叶节点.
	 */
	public Tree(int paraN) {
		n = paraN;
		parent = new char[n];
		parent[0] = -1; // -1 即 \phi
	}// Of the constructor
}//Of class Tree
a:								b:
n = 7							n=4
root = 'a'						root = 'b'
parent = null					parent = 

???

上一篇:Vj数据结构3


下一篇:输出从顶点Vi到Vj的所有简单路径