# -*- coding: UTF-8 -*- # 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线 import tensorflow as tf from sklearn import datasets from matplotlib import pyplot as plt import numpy as np x_data = datasets.load_iris().data y_data = datasets.load_iris().target # 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率) np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应 np.random.shuffle(x_data) np.random.seed(116) np.random.shuffle(y_data) tf.random.set_seed(116) x_train = x_data[:-30] y_train = y_data[:-30] x_test = x_data[-30:] y_test = y_data[-30:] x_train = tf.cast(x_train, tf.float32) x_test = tf.cast(x_test, tf.float32) train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32) test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1)) b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1)) lr = 0.1 # 学习率为0.1 train_loss_results = [] test_acc = [] epoch = 500 loss_all = 0 # 训练部分 for epoch in range(epoch): for step, (x_train, y_train) in enumerate(train_db): with tf.GradientTape() as tape: # with结构记录梯度信息 y = tf.matmul(x_train, w1) + b1 y = tf.nn.softmax(y) y_ = tf.one_hot(y_train, depth=3) loss = tf.reduce_mean(tf.square(y_ - y)) loss_all += loss.numpy() # 计算loss对各个参数的梯度 grads = tape.gradient(loss, [w1, b1]) # 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad w1.assign_sub(lr * grads[0]) # 参数w1自更新 b1.assign_sub(lr * grads[1]) # 参数b自更新 # 每个epoch,打印loss信息 print("Epoch {}, loss: {}".format(epoch, loss_all/4)) train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中 loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备 # 测试部分 total_correct, total_number = 0, 0 for x_test, y_test in test_db: # 使用更新后的参数进行预测 y = tf.matmul(x_test, w1) + b1 y = tf.nn.softmax(y) pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类 # 将pred转换为y_test的数据类型 pred = tf.cast(pred, dtype=y_test.dtype) # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型 correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32) # 将每个batch的correct数加起来 correct = tf.reduce_sum(correct) # 将所有batch中的correct数加起来 total_correct += int(correct) # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数 total_number += x_test.shape[0] # 总的准确率等于total_correct/total_number acc = total_correct / total_number test_acc.append(acc) print("Test_acc:", acc) print("--------------------------") # 绘制 loss 曲线 plt.title(‘Loss Function Curve‘) plt.xlabel(‘Epoch‘) plt.ylabel(‘Loss‘) plt.plot(train_loss_results, label="$Loss$") plt.legend() plt.show() # 绘制 Accuracy 曲线 plt.title(‘Acc Curve‘) plt.xlabel(‘Epoch‘) plt.ylabel(‘Acc‘) plt.plot(test_acc, label="$Accuracy$") plt.legend() plt.show()