1、洛伦兹变换
Lorentz方程
狭义相对性原理表示,自然规律对洛伦兹变换群是不变的。所谓的洛伦兹变换,是由一个时空坐标系 x α x^\alpha xα到另一个坐标系 x ′ α x'^\alpha x′α的变换(时空变换),这个线性变换具有如下形式:
x ′ α = Λ β α x β + a α x'^\alpha=\Lambda^\alpha_\beta x^\beta + a^\alpha x′α=Λβαxβ+aα (1)
其中, a α a^\alpha aα和 Λ β α \Lambda^\alpha_\beta Λβα是常数, a α a^\alpha aα表示坐标, Λ β α \Lambda^\alpha_\beta Λβα表示矩阵,它们满足条件:
Λ γ α Λ δ β η α β = η γ δ \Lambda^\alpha_\gamma\Lambda^\beta_\delta\eta_{\alpha\beta} =\eta_{\gamma\delta} ΛγαΛδβηαβ=ηγδ (2)
上述关系式被称为Lorentz方程
关于Lorentz方程的几点说明
(1)矩阵 η α β \eta_{\alpha\beta} ηαβ具有如下形式:
η α β = { + 1 , α = β = 1 , o r 2 , o r 3 − 1 , α = β = 0 0 , α ≠ β \eta_{\alpha\beta}=\left\{\begin{aligned}&+1,\ \alpha=\beta=1,\ or\ 2,\ or\ 3\\ &-1,\ \alpha=\beta=0\\ &0,\ \alpha\neq \beta\end{aligned}\right. ηαβ=⎩⎪⎨⎪⎧+1, α=β=1, or 2, or 3−1, α=β=00, α=β
(2) x 1 x^1 x1, x 2 x^2 x2, x 3 x^3 x3是三个空间分量, x 0 = t x^0=t x0=t是时间分量
(3)采用了爱因斯坦约定,所有的重复指标表示要求和(求和号被省略不写),例如,如果在式(1)中取 α = 0 \alpha=0 α=0,则(1)式为:
x ′ 0 = Λ 0 0 x 0 + Λ 1 0 x 1 + Λ 2 0 x 2 + Λ 3 0 x 3 + a 0 x'^0=\Lambda^0_0 x^0+\Lambda^0_1 x^1+\Lambda^0_2 x^2+\Lambda^0_3 x^3 + a^0 x′0=Λ00x0+Λ10x1+Λ20x2+Λ30x3+a0
(4)Lorentz变换保持“原时” d τ d\tau dτ不变,即:
d τ 2 ≡ d t 2 − d x → 2 = − η α β d x α d x β d\tau^2\equiv dt^2-d\overrightarrow x^2=-\eta_{\alpha\beta}dx^\alpha dx^\beta dτ2≡dt2−dx 2=−ηαβdxαdxβ
(关于第二个等号是如何变过去的: t = x 0 t=x^0 t=x0,而 x → \overrightarrow x x 对应的上角标分别是1,2,3,从右边出发可以推出左边)
证明:
在坐标变换的过程中, x α → x ′ α x^\alpha\rightarrow x'^\alpha xα→x′α, d τ ′ 2 = − η α β d x ′ α d x ′ β d\tau'^2=-\eta_{\alpha\beta}dx'^\alpha dx'^\beta dτ′2=−ηαβdx′αdx′β。再对定义中的(1)式进行微分,得到:
d x ′ α = Λ γ α d x γ dx'^\alpha=\Lambda^\alpha_\gamma dx^\gamma dx′α=Λγαdxγ
由此,分别将: Λ δ α d x δ \Lambda^\alpha_\delta dx^\delta Λδαdxδ和 Λ γ β d x γ \Lambda^\beta_\gamma dx^\gamma Λγβdxγ代入到 d τ ′ 2 d\tau'^2 dτ′2右端的两个 d x ′ dx' dx′中:
d τ ′ 2 = − η α β Λ δ α Λ γ β d x δ d x γ = − η δ γ d x δ d x γ = − η α β d x α d x β = d τ 2 \begin{aligned}d\tau'^2&=-\eta_{\alpha\beta}\Lambda^\alpha_\delta\Lambda_\gamma^\beta dx^\delta dx^\gamma\\ &=-\eta_{\delta\gamma}dx^{\delta}dx^{\gamma}\\ &=-\eta_{\alpha\beta}dx^\alpha dx^\beta\\ &=d\tau^2\end{aligned} dτ′2=−ηαβΛδαΛγβdxδdxγ=−ηδγdxδdxγ=−ηαβdxαdxβ=dτ2
QED.
(5)Lorentz变换是保持 d τ d\tau dτ不变的仅有的非奇异变换 x → x ′ x\rightarrow x' x→x′
非奇异的含义: x ′ ( x ) x'(x) x′(x)和 x ( x ′ ) x(x') x(x′)都是正规的可微分函数,并使矩阵 ∂ x ′ α ∂ x β \dfrac{\partial x'^\alpha}{\partial x^\beta} ∂xβ∂x′α有确定的逆矩阵 ∂ x β ∂ x ′ α \dfrac{\partial x^\beta}{\partial x'^\alpha} ∂x′α∂xβ
证明:
存在性已在说明(4)中证明,接下来只需要证明唯一性,即先考虑最一般的坐标变换,在加上各种条件后最后只剩下这一种变换
首先需要证明是线性变换,随后需要证明满足Lorentz方程
先考虑最一般的坐标变换 x α → x ′ α x^\alpha\rightarrow x'^\alpha xα→x′α,一般地把 d τ → d τ ′ d\tau\rightarrow d\tau' dτ→dτ′
d τ ′ 2 = − η α β d x ′ α d x ′ β d\tau'^2=-\eta_{\alpha\beta}dx'^\alpha dx'^\beta dτ′2=−ηαβdx′αdx′β
目标: d τ ′ 2 = d τ 2 = − η γ δ d x γ d x δ d\tau'^2=d\tau^2=-\eta_{\gamma\delta} dx^\gamma dx^\delta dτ′2=dτ2=−ηγδdxγdxδ
将 ∂ x ′ α ∂ x γ d x γ \dfrac{\partial x'^\alpha}{\partial x^\gamma}dx^\gamma ∂xγ∂x′αdxγ代入到 d x ′ α dx'^\alpha dx′α,将 ∂ x ′ β ∂ x δ d x δ \dfrac{\partial x'^\beta}{\partial x^\delta}dx^\delta ∂xδ∂x′βdxδ代入到 d x ′ β dx'^\beta dx′β:
d τ ′ 2 = − η α β ∂ x ′ α ∂ x γ ∂ x ′ β ∂ x δ d x γ d x δ d\tau'^2=-\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial x'^\beta}{\partial x^\delta}dx^\gamma dx^\delta dτ′2=−ηαβ∂xγ∂x′α∂xδ∂x′βdxγdxδ
与目标结合对比,两边相消,得到:
η γ δ = η α β ∂ x ′ α ∂ x γ ∂ x ′ β ∂ x δ \eta_{\gamma\delta}=\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial x'^\beta}{\partial x^\delta} ηγδ=ηαβ∂xγ∂x′α∂xδ∂x′β
上式两端对 x ϵ x^\epsilon xϵ求导,得:
η α β ∂ 2 x ′ α ∂ x γ ∂ x ϵ ∂ x ′ β ∂ x δ + η α β ∂ x ′ α ∂ x γ ∂ 2 x ′ β ∂ x δ ∂ x ϵ = 0 \eta_{\alpha\beta}\dfrac{\partial^2 x'^\alpha}{\partial x^\gamma\partial x^\epsilon}\dfrac{\partial x'^\beta}{\partial x^\delta}+\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial^2x'^\beta}{\partial x^\delta \partial x^\epsilon}=0 ηαβ∂xγ∂xϵ∂2x′α∂xδ∂x′β+ηαβ∂xγ∂x′α∂xδ∂xϵ∂2x′β=0(2)
(2)式中 γ \gamma γ与 ϵ \epsilon ϵ互换,得:
η α β ∂ 2 x ′ α ∂ x ϵ ∂ x γ ∂ x ′ β ∂ x δ + η α β ∂ x ′ α ∂ x ϵ ∂ 2 x ′ β ∂ x δ ∂ x γ = 0 \eta_{\alpha\beta}\dfrac{\partial^2 x'^\alpha}{\partial x^\epsilon\partial x^\gamma}\dfrac{\partial x'^\beta}{\partial x^\delta}+\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\epsilon}\dfrac{\partial^2x'^\beta}{\partial x^\delta \partial x^\gamma}=0 ηαβ∂xϵ∂xγ∂2x′α∂xδ∂x′β+ηαβ∂xϵ∂x′α∂xδ∂xγ∂2x′β=0(3)
继续(2)式中 δ \delta δ与 ϵ \epsilon ϵ互换,得:
η α β ∂ 2 x ′ α ∂ x γ ∂ x δ ∂ x ′ β ∂ x ϵ + η α β ∂ x ′ α ∂ x γ ∂ 2 x ′ β ∂ x δ ∂ x ϵ = 0 \eta_{\alpha\beta}\dfrac{\partial^2 x'^\alpha}{\partial x^\gamma\partial x^\delta}\dfrac{\partial x'^\beta}{\partial x^\epsilon}+\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial^2x'^\beta}{\partial x^\delta \partial x^\epsilon}=0 ηαβ∂xγ∂xδ∂2x′α∂xϵ∂x′β+ηαβ∂xγ∂x′α∂xδ∂xϵ∂2x′β=0(4)
对(4)式的第一项,进行 α \alpha α和 β \beta β的互换,得:
η α β ∂ 2 x ′ β ∂ x γ ∂ x δ ∂ x ′ α ∂ x ϵ + η α β ∂ x ′ α ∂ x γ ∂ 2 x ′ β ∂ x δ ∂ x ϵ = 0 \eta_{\alpha\beta}\dfrac{\partial^2 x'^\beta}{\partial x^\gamma\partial x^\delta}\dfrac{\partial x'^\alpha}{\partial x^\epsilon}+\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial^2x'^\beta}{\partial x^\delta \partial x^\epsilon}=0 ηαβ∂xγ∂xδ∂2x′β∂xϵ∂x′α+ηαβ∂xγ∂x′α∂xδ∂xϵ∂2x′β=0(4’)
(2)+(3)-(4’),最终得到:
η α β ∂ 2 x ′ α ∂ x γ ∂ x ϵ ∂ x ′ β ∂ x δ = 0 ∂ 2 x ′ α ∂ x γ ∂ x ϵ = 0 \begin{aligned}\eta_{\alpha\beta}\dfrac{\partial^2 x'^\alpha}{\partial x^\gamma\partial x^\epsilon}\dfrac{\partial x'^\beta}{\partial x^\delta}&=0\\ \dfrac{\partial^2 x'^\alpha}{\partial x^\gamma \partial x^\epsilon}&=0\end{aligned} ηαβ∂xγ∂xϵ∂2x′α∂xδ∂x′β∂xγ∂xϵ∂2x′α=0=0
上式的通解即为线性函数-定义中的(1)式,且注意到当定义中的(1)式代入到下式时:
η γ δ = η α β ∂ x ′ α ∂ x γ ∂ x ′ β ∂ x δ \eta_{\gamma\delta}=\eta_{\alpha\beta}\dfrac{\partial x'^\alpha}{\partial x^\gamma}\dfrac{\partial x'^\beta}{\partial x^\delta} ηγδ=ηαβ∂xγ∂x′α∂xδ∂x′β
Λ β α \Lambda^\alpha_\beta Λβα必然符合定义中的(2)式,由此证明是Lorentz变换(通解满足定义1式,而 Λ β α \Lambda^\alpha_\beta Λβα又满足了定义2式,由此看来,这满足了Lorentz的定义,就是Lorentz变换了,同时也证明了唯一性)
QED.
(6)对于光速运动的粒子:
d τ 2 = d t 2 [ 1 − ( d x → d t ) 2 ] = d t 2 ( 1 − 1 ) = 0 d\tau^2=dt^2\left[1-\left(\dfrac{d\overrightarrow x}{dt}\right)^2\right]=dt^2(1-1)=0 dτ2=dt2⎣⎡1−(dtdx )2⎦⎤=dt2(1−1)=0
即 d τ = 0 d\tau=0 dτ=0
(7)对满足Lorentz方程的所有Lorentz变换集合,组成非齐次的Lorentz群(或称为Poincare群)。若取 a α = 0 a^\alpha=0 aα=0,则称齐次的Lorentz群,简称Lorentz群
(8)如果是正的Lorentz,则需要加上附加条件(之后如无特殊情况,讨论的将会都是正Lorentz群):
Λ 0 0 ≥ 1 , ∣ Λ ∣ = + 1 \Lambda^0_0\ge 1,\ |\Lambda|=+1 Λ00≥1, ∣Λ∣=+1
【1】:一般的 Λ 0 0 \Lambda^0_0 Λ00
Lorentz方程 γ = δ = 0 \gamma=\delta=0 γ=δ=0
Λ 0 α Λ 0 β η α β = η 00 = − 1 \Lambda^\alpha_0\Lambda^\beta_0\eta_{\alpha\beta}=\eta_{00}=-1 Λ0αΛ0βηαβ=η00=−1
( Λ 0 0 ) 2 = 1 + ∑ i = 1 , 2 , 3 ( Λ 0 i ) 2 ≥ 1 (\Lambda^0_0)^2=1+\sum\limits_{i=1,2,3}(\Lambda^i_0)^2\ge 1 (Λ00)2=1+i=1,2,3∑(Λ0i)2≥1
由上述不等式,有:
{ Λ 0 0 ≥ 1 Λ 0 0 ≤ − 1 \left\{\begin{aligned}&\Lambda^0_0\ge 1\\ &\Lambda_0^0\le -1\end{aligned}\right. {Λ00≥1Λ00≤−1
只取第一种情况
【2】:一般的 Λ \Lambda Λ的行列式
把Lorentz方程写成矩阵形式
∣ η ∣ = ∣ Λ T η Λ ∣ |\eta|=|\Lambda^T\eta\Lambda| ∣η∣=∣ΛTηΛ∣
得到: ∣ Λ ∣ 2 = 1 |\Lambda|^2=1 ∣Λ∣2=1, ∣ Λ ∣ = ± 1 |\Lambda|=\pm 1 ∣Λ∣=±1,只取 ∣ Λ ∣ = + 1 |\Lambda|=+1 ∣Λ∣=+1,此即正Lorentz群
【3】正Lorentz群 Λ β α \Lambda^\alpha_\beta Λβα可以通过连续参数变换,变换到单位元素 δ β α \delta^\alpha_\beta δβα,反之亦然
【4】正Lorentz变换,不包括空间反演变换( ∣ Λ ∣ = − 1 |\Lambda|=-1 ∣Λ∣=−1, Λ 0 0 ≥ 1 \Lambda^0_0\ge 1 Λ00≥1),也不包括时间反演变换( ∣ Λ ∣ = − 1 |\Lambda|=-1 ∣Λ∣=−1, Λ 0 0 = − 1 \Lambda^0_0=-1 Λ00=−1)
洛伦兹变换的简单分类
纯转动(以绕z轴转动为例)
Λ β α = ( 1 0 0 0 0 cos θ sin θ 0 0 − sin θ cos θ 0 0 0 0 0 ) \Lambda^\alpha_\beta=\left(\begin{matrix}1 & 0 & 0 & 0\\ 0 & \cos\theta & \sin\theta & 0\\ 0 & -\sin\theta & \cos\theta & 0\\ 0 & 0 & 0 & 0\end{matrix}\right) Λβα=⎝⎜⎜⎛10000cosθ−sinθ00sinθcosθ00000⎠⎟⎟⎞
推动(boosts)
两个坐标系 ∑ \sum ∑、 ∑ ′ \sum' ∑′之间有相对运动,其中 ∑ ′ \sum' ∑′系相对于 ∑ \sum ∑系的速度为 v → \overrightarrow v v 。考虑速度 v → \overrightarrow v v 沿x轴方向,则:
Λ β α ( b o o s t ) = ( cosh ϕ − sinh ϕ 0 0 − sinh ϕ cosh ϕ 0 0 0 0 1 0 0 0 0 1 ) \Lambda^\alpha_\beta(boost)=\left(\begin{matrix}\cosh\phi & -\sinh\phi & 0 & 0\\ -\sinh\phi & \cosh\phi& 0 & 0\\ 0 & 0 & 1& 0\\ 0 & 0 & 0 & 1\end{matrix}\right) Λβα(boost)=⎝⎜⎜⎛coshϕ−sinhϕ00−sinhϕcoshϕ0000100001⎠⎟⎟⎞
使用此变换后:
{ t ′ = t cosh ϕ − x sinh ϕ x ′ = − t sinh ϕ + x cosh ϕ \left\{\begin{aligned}t'&=t\cosh\phi-x\sinh\phi\\ x'&=-t\sinh\phi+x\cosh\phi\end{aligned}\right. {t′x′=tcoshϕ−xsinhϕ=−tsinhϕ+xcoshϕ
令 tanh ϕ = v \tanh\phi=v tanhϕ=v,则 cosh ϕ = 1 1 − v 2 \cosh\phi=\dfrac{1}{\sqrt{1-v^2}} coshϕ=1−v2 1, sinh ϕ = v 1 − v 2 \sinh\phi=\dfrac{v}{\sqrt{1-v^2}} sinhϕ=1−v2 v,则可以得到:
{ t ′ = t − v x 1 − v 2 x ′ = x − v t 1 − v 2 \left\{\begin{aligned}&t'=\dfrac{t-vx}{\sqrt{1-v^2}}\\ &x'=\dfrac{x-vt}{\sqrt{1-v^2}}\end{aligned}\right. ⎩⎪⎪⎨⎪⎪⎧t′=1−v2 t−vxx′=1−v2 x−vt
通常定义 γ \gamma γ因子为 γ ≡ ( 1 − v 2 ) − 1 / 2 \gamma\equiv(1-v^2)^{-1/2} γ≡(1−v2)−1/2,则boost可以写为如下形式:
Λ β α ( b o o s t ) = ( γ − v γ 0 0 − v γ γ 0 0 0 0 1 0 0 0 0 1 ) \Lambda^\alpha_\beta(boost)=\left(\begin{matrix}\gamma & -v\gamma & 0 & 0\\ -v\gamma & \gamma& 0 & 0\\ 0 & 0 & 1& 0\\ 0 & 0 & 0 & 1\end{matrix}\right) Λβα(boost)=⎝⎜⎜⎛γ−vγ00−vγγ0000100001⎠⎟⎟⎞
还可以写为:
Λ 0 0 = γ , Λ 0 i = − γ v i , Λ j 0 = − γ v j , Λ j i = δ i j + v i v j γ − 1 v 2 \Lambda^0_0=\gamma,\ \Lambda^i_0=-\gamma v_i,\ \Lambda^0_j=-\gamma v_j,\ \Lambda^i_j=\delta_{ij}+v_iv_j\dfrac{\gamma-1}{v^2} Λ00=γ, Λ0i=−γvi, Λj0=−γvj, Λji=δij+vivjv2γ−1
任何正齐次Lorentz变换都可以表示为推动和转动的乘积
以上内容记录于2021-9-18