在 JavaScript 浮点数做数学运算的时候,你经常会发现一些问题,举几个例子:
// 加法 ===================== // 0.1 + 0.2 = 0.30000000000000004 // 0.7 + 0.1 = 0.7999999999999999 // 0.2 + 0.4 = 0.6000000000000001 // 2.22 + 0.1 = 2.3200000000000003 // 减法 ===================== // 1.5 - 1.2 = 0.30000000000000004 // 0.3 - 0.2 = 0.09999999999999998 // 乘法 ===================== // 19.9 * 100 = 1989.9999999999998 // 19.9 * 10 * 10 = 1990 // 1306377.64 * 100 = 130637763.99999999 // 1306377.64 * 10 * 10 = 130637763.99999999 // 0.7 * 180 = 125.99999999999999 // 9.7 * 100 = 969.9999999999999 // 39.7 * 100 = 3970.0000000000005 // 除法 ===================== // 0.3 / 0.1 = 2.9999999999999996 // 0.69 / 10 = 0.06899999999999999
在 JavaScript 中计算 0.1 + 0.2
时,到底发生了什么呢?
首先,十进制的0.1
和0.2
都会被转换成二进制,但由于浮点数用二进制表达时是无穷的,例如。
JavaScript 代码:
0.1 -> 0.0001100110011001...(无限) 0.2 -> 0.0011001100110011...(无限)
IEEE 754 标准的 64 位双精度浮点数的小数部分最多支持 53 位二进制位,所以两者相加之后得到二进制为:
JavaScript 代码:
0.0100110011001100110011001100110011001100110011001100
因浮点数小数位的限制而截断的二进制数字,再转换为十进制,就成了 0.30000000000000004
。所以在进行算术计算时会产生误差。
一些解决方案。
通常这种对精度要求高的计算都应该交给后端去计算和存储,因为后端有成熟的库来解决这种计算问题。前端也有几个不错的类库:
Math.js
Math.js 是专门为 JavaScript 和 Node.js 提供的一个广泛的数学库。它具有灵活的表达式解析器,支持符号计算,配有大量内置函数和常量,并提供集成解决方案来处理不同的数据类型
像数字,大数字(超出安全数的数字),复数,分数,单位和矩阵。 功能强大,易于使用。
还有几个类库自行百度。
重点讲解自定义方法,需要将浮点数转换字符串,分隔成为整数部分和小数部分,小数部分再转换为整数,计算结果后,再转换为浮点数。如下:
/** ** 加法函数,用来得到精确的加法结果 ** 说明:javascript的加法结果会有误差,在两个浮点数相加的时候会比较明显。这个函数返回较为精确的加法结果。 ** 调用:accAdd(arg1,arg2) ** 返回值:arg1加上arg2的精确结果 **/ function accAdd(arg1, arg2) { var r1, r2, m, c; try { r1 = arg1.toString().split(".")[1].length; } catch (e) { r1 = 0; } try { r2 = arg2.toString().split(".")[1].length; } catch (e) { r2 = 0; } c = Math.abs(r1 - r2); m = Math.pow(10, Math.max(r1, r2)); if (c > 0) { var cm = Math.pow(10, c); if (r1 > r2) { arg1 = Number(arg1.toString().replace(".", "")); arg2 = Number(arg2.toString().replace(".", "")) * cm; } else { arg1 = Number(arg1.toString().replace(".", "")) * cm; arg2 = Number(arg2.toString().replace(".", "")); } } else { arg1 = Number(arg1.toString().replace(".", "")); arg2 = Number(arg2.toString().replace(".", "")); } return (arg1 + arg2) / m; } //给Number类型增加一个add方法,调用起来更加方便。 Number.prototype.add = function(arg) { return accAdd(arg, this); }; /** ** 减法函数,用来得到精确的减法结果 ** 说明:javascript的减法结果会有误差,在两个浮点数相减的时候会比较明显。这个函数返回较为精确的减法结果。 ** 调用:accSub(arg1,arg2) ** 返回值:arg1加上arg2的精确结果 **/ function accSub(arg1, arg2) { var r1, r2, m, n; try { r1 = arg1.toString().split(".")[1].length; } catch (e) { r1 = 0; } try { r2 = arg2.toString().split(".")[1].length; } catch (e) { r2 = 0; } m = Math.pow(10, Math.max(r1, r2)); //last modify by deeka //动态控制精度长度 n = (r1 >= r2) ? r1 : r2; return ((arg1 * m - arg2 * m) / m).toFixed(n); } // 给Number类型增加一个mul方法,调用起来更加方便。 Number.prototype.sub = function(arg) { return accMul(arg, this); }; /** ** 乘法函数,用来得到精确的乘法结果 ** 说明:javascript的乘法结果会有误差,在两个浮点数相乘的时候会比较明显。这个函数返回较为精确的乘法结果。 ** 调用:accMul(arg1,arg2) ** 返回值:arg1乘以 arg2的精确结果 **/ function accMul(arg1, arg2) { var m = 0, s1 = arg1.toString(), s2 = arg2.toString(); try { m += s1.split(".")[1].length; } catch (e) {} try { m += s2.split(".")[1].length; } catch (e) {} return Number(s1.replace(".", "")) * Number(s2.replace(".", "")) / Math.pow(10, m); } // 给Number类型增加一个mul方法,调用起来更加方便。 Number.prototype.mul = function(arg) { return accMul(arg, this); }; /** ** 除法函数,用来得到精确的除法结果 ** 说明:javascript的除法结果会有误差,在两个浮点数相除的时候会比较明显。这个函数返回较为精确的除法结果。 ** 调用:accDiv(arg1,arg2) ** 返回值:arg1除以arg2的精确结果 **/ function accDiv(arg1, arg2) { var t1 = 0, t2 = 0, r1, r2; try { t1 = arg1.toString().split(".")[1].length; } catch (e) {} try { t2 = arg2.toString().split(".")[1].length; } catch (e) {} with(Math) { r1 = Number(arg1.toString().replace(".", "")); r2 = Number(arg2.toString().replace(".", "")); return (r1 / r2) * pow(10, t2 - t1); } } //给Number类型增加一个div方法,调用起来更加方便。 Number.prototype.div = function(arg) { return accDiv(this, arg); };
原文:https://www.cnblogs.com/onlywu/p/14184711.html