二叉堆(binary heap)
二叉堆数据结构是一种数组对象,它可以被视为一棵完全二叉树。同二叉查找树一样,堆也有两个性质,即结构性和堆序性。对于数组中任意位置i上的元素,其左儿子在位置2i上,右儿子在左儿子后的单元2i+1中,它的父亲在[i/2](向下取整)中。 在一个小顶堆中,对于每一个节点X,X的父亲中的关键字小于(或等于)X中的关键字,根节点除外(它没有父亲)。
因此,一个数据结构将由一个数组、一个代表最大值的整数、以及当前的堆的大小组成。一个典型的优先队列(priority queue)如下:
#ifndef _BinHeap_H
struct HeapStruct;
typedef struct HeapStruct *PriorityQueue;
PriorityQueue Initialize(int MaxElements);
void Destroy(PriorityQueue H);
void MakeEmpty(PriorityQueue H);
void Insert(ElementType X,PriorityQueue H);
ElementType DeleteMin(PriorityQueue H):
ElementType FinMin(PriorityQueue H);
int IsEmpty(PriorityQueue H);
int IsFull(PriorityQueue H);
#endif struct HeapSrtuct
{
int Capacity;
int Size;
ElementType *Elements;
};
创建一个空堆:
PriorityQueue Initialize(int MaxElements)
{
PriorityQueue H;
if(MaxElements<MinPQSize)
Error("Priority queue size is too small");
H=malloc(sizeof(struct HeapStruct));
if(H==NULL)
FatalError("Out of space!");
/*分配数组时多分配一个单位给哨兵*/
H->Elements=malloc((MaxElements+)*sizeof(ElementType));
if(H->Elements==NULL)
FatalError("Out of space!");
H->Capacity=MaxElements;
H->Size=;
H->Element[]=MinData;
return H;
}
基本的堆操作:
Insert(插入)
为将一个元素X插入到堆中,我们在下一个空闲位置创建一个空穴,否则该堆将不是完全二叉树。如果X可以放在该空穴中而并不破坏堆的序,那么插入完成。否则,我们把空穴的父节点上的元素移入该空穴中,这样,空穴就朝着根的方向上行一步。继续该过程直到X能被放入空穴中为止。这种策略叫做上滤(percolate up);
/* H->Element[0] is a sentinel */
void Insert(ElementType X,PriorityQueue H)
{
int i;
if(IsFull(H))
{
Error("priority queue is full");
return;
}
for(i=++H->Size;H->Elements[i/]>X;i/=)
H->Elements[i]=H->Elements[i/];
H->Elements[i]=X;
}
程序并没有通过“反复交换直至建立正确的序”这种方法实现上滤过程,因为一次交换需要三条赋值语句,如果一个元素上滤d层,那么由于交换而产生的赋值语句就到达3d,这里的方法只用d+1次赋值。
如果要插入的元素是新的最小值,那么它将一直被推向顶端。这样在某一时刻,i将是1,我们就需要令程序跳出while循环。当然我们可以使用明确的测试做到这一点,不过,我们采用的是把一个很小的值放到位置0处以使while循环得以终止。这个值必须小于堆中的任何值,我们称之为标记(sentinel)。这种想法类似于链表头结点的使用。通过添加一条哑信息(dummy piece of information),我们避免了每个循环都要执行一次的测试,从而节省了一些时间。
DeleteMin(删除最小元)
当删除一个最小元时,在根节点出产生了一个空穴。由于现在堆少了一个元素,因此堆中随后一个元素X必须移动到该堆的某个地方。我们将空穴的两个儿子中较小者移入空穴,这样就把空穴向下推了一层。重复该步骤直到X可以被放入空穴中。这种策略叫做下滤(percolate down)。
在上图中,删除13后,我们必须要正确地将31放到堆中。
ElementType DeleteMin(PriorityQueue H)
{
int i,Child;
ElementType MinElement,LastElement;
if(IsEmpty(H))
{
Error("Priority queue is empty");
return H->Elements[];
}
MinElement=H->Elements[];
LastElement=H->Elements[H->Size--];
for(i=;i*<=H->Size;i=Child)
{
/*找到最小的孩子*/
Child=i*;
if(Child!=H->Size&&H->Elements[Child+]<H->Elements[Child])
Child++;
/*下沉一层*/
if(LastElement>H->Elements[Child])
H->Elements[i]=H->Elements[Child];
else
break;
}
H->Elements[i]=LastElement;
return MinElement;
}
其它的堆操作:
DecreaseKey(降低关键字的值)
DecreaseKey(P,Δ,H)操作降低在位置P处的关键字的值,降值的幅度为正的量Δ。通过上滤调整堆。该操作对系统管理程序是有用的:系统管理程序能够使它们的程序以最高优先级来运行。
IncreaseKey(增加关键字的值)
IncreaseKey(P,Δ,H)操作增加在位置P处的关键字的值,增值的幅度为正的量Δ。通过下滤调整堆。许多调度程序自动地降低正在过多消耗CPU的进程的优先级。
Delete(删除)
Delete(P,H)操作删除堆中位置P上的节点。者通过首先执行DecreaseKey(P,∞,H),然后再执行DeleteMin(H)来完成。当一个进程被用户终止(而不是正常终止)时,它必须从优先队列中除去。
BuildHeap(构建堆)
BuildHeap(H)操作把N个关键字作为输入并把它们放入堆中。可以使用N个相继的Insert(插入操作来实现。平均时间是O(N)。