3150 魔法圆
哈利波特在城市里布置了n个法阵(2 <= n <= 50000),现在给出这n个法阵的坐标,请你帮助哈利波特选取一个圆,使得至少个法阵在圆周上(到圆心的距离为圆的半径,可以有不超过0.01的误差),以便哈利波特施展魔法对抗魔兽。
输入
第一行一个整数n,表示法阵个数
接下来n行每行两个整数x y表示法阵的坐标
输出
一行三个整数x y R,分别表示该圆的圆心横坐标、纵坐标和半径
数据范围
10% 2 <= n <= 10
30% 2 <= n <= 300
60% 2 <= n <= 3000
100% 2 <= n <= 50000
输入样例
7
1 1
1 0
1 -1
0 1
-1 1
0 -1
-1 0
输出样例
0 0 1
解析:
N的范围是1e5,所以枚举点是行不通的,因为3个点可以确定一个圆,所以我们只要每次随机三个点然后来确定一个圆,最后在判断这个圆是否可行。因为至少有一半的点是在圆上所以随机的次数是非常少的。对于小于5个点的要直接特判。
放代码:
#include <iostream>
#include <stdlib.h>
#include <time.h>
#include <cmath>
using namespace std;
const double eps=1e-3;
struct P
{
double x,y;
} sb[100005];
P Yuanxin(P a,P b,P c) //(已知三点求圆心坐标)
{
P q;
q.x=((c.y-a.y)*(c.y-b.y)*(b.y-a.y)+(a.x*a.x-b.x*b.x)*(c.y-a.y)-(a.x*a.x-c.x*c.x)*(b.y-a.y))/(2*((c.y-a.y)*(a.x-b.x)-(a.x-c.x)*(b.y-a.y)));
q.y=((c.x-a.x)*(c.x-b.x)*(b.x-a.x)+(a.y*a.y-b.y*b.y)*(c.x-a.x)-(a.y*a.y-c.y*c.y)*(b.x-a.x))/(2*((c.x-a.x)*(a.y-b.y)-(a.y-c.y)*(b.x-a.x)));
return q;
}
int main()
{
int t;
srand((unsigned int)time(NULL));
int n;
scanf("%d",&n);
for(int i = 0 ; i < n ; i++)scanf("%lf%lf",&sb[i].x,&sb[i].y);
if(n == 1 || n == 2)
{
printf("%lf %lf %lf\n",sb[0].x + 1,sb[0].y,1.0);
}
if(n == 3 || n == 4)
{
printf("%lf %lf %lf\n",(sb[0].x+sb[1].x)/2,(sb[0].y+sb[1].y)/2,sqrt(((sb[0].x-sb[1].x)*(sb[0].x-sb[1].x))+((sb[0].y-sb[1].y)*(sb[0].y-sb[1].y)))/2);
}
while(1)
{
int a = rand()%n;
int b = rand()%n;
int c = rand()%n;
if(a == b || a == c || b == c)continue;
double x1,x2,x3,y1,y2,y3;
x1=sb[a].x;x2=sb[b].x;x3=sb[c].x;
y1=sb[a].y;y2=sb[b].y;y3=sb[c].y;
if((x1 == x2 && x2 == x3) || (y1 == y2 && y2 == y3))continue;
P yuanxin = Yuanxin(sb[a],sb[b],sb[c]);
double r = sqrt(((sb[a].x-yuanxin.x)*(sb[a].x-yuanxin.x))+((sb[a].y-yuanxin.y)*(sb[a].y-yuanxin.y)));
int sum=0;
for(int i = 0 ; i < n ; i++)
{
if(fabs(sqrt(((sb[i].x - yuanxin.x) * (sb[i].x - yuanxin.x)) + ((sb[i].y - yuanxin.y) * (sb[i].y - yuanxin.y))) - r) <= eps)
sum++;
}
if(2 * sum >= n)
{
printf("%lf %lf %lf\n",yuanxin.x,yuanxin.y,r);
break;
}
}
return 0;
}