MapReduce编程:单词去重

编程实现单词去重要用到NullWritable类型。

NullWritable:

NullWritable 是一种特殊的Writable 类型,由于它的序列化是零长度的,所以没有字节被写入流或从流中读出,可以用作占位符。比如,在MapReduce 中,在不需要这个位置的时候,键或值能够被声明为NullWritable,从而有效存储一个不变的空值。

通过调用NullWritable.get() 方法来检索。

单词去重我们最后要输出的形式是<单词>,所以值可以声明为NullWritable。

代码如下:

 package org.apache.hadoop.examples;

     import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class DistinctWord{
public DistinctWord() {
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration(); //String[] otherArgs = (new GenericOptionsParser(conf, args)).getRemainingArgs();
String[] otherArgs = new String[]{"input","output"}; //设置输入和输出
if(otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
} Job job = Job.getInstance(conf, "distinct word"); job.setJarByClass(DistinctWord.class); //设置jar包所在路径 //指定Mapper和Reducer类
job.setMapperClass(DistinctWord.DistinctWordMapper.class);
job.setCombinerClass(DistinctWord.DistinctWordReducer.class);
job.setReducerClass(DistinctWord.DistinctWordReducer.class); //指定MapTask的输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class); //指定ReduceTask的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class); //指定数据输入路径
for(int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
} //指定数据输出路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[otherArgs.length - 1])); //提交任务
System.exit(job.waitForCompletion(true)?0:1);
} //输出类型定义为NullWritable
public static class DistinctWordMapper extends Mapper<Object, Text, Text, NullWritable> {
private Text word = new Text(); public DistinctWordMapper() {
} public void map(Object key, Text value, Mapper<Object, Text, Text, NullWritable>.Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString()); //分词器 while(itr.hasMoreTokens()) {
this.word.set(itr.nextToken());
context.write(this.word, NullWritable.get());
} }
} public static class DistinctWordReducer extends Reducer<Text, NullWritable, Text, NullWritable> { public DistinctWordReducer() {
} //reduce方法每调用一次,就接收到一组相同的单词,所以直接输出一次key即可。
public void reduce(Text key, Iterable<NullWritable> values, Reducer<Text, NullWritable, Text, NullWritable>.Context context) throws IOException, InterruptedException {
context.write(key, NullWritable.get());
}
} }
上一篇:Dynamics 365 Online-Virtual Entities


下一篇:wangEditor-基于javascript和css开发的 Web富文本编辑器, 轻量、简洁、易用、开源免费(2)