sklearn.linear_model.LinearRegresion学习

sklearn线性模型之线性回归

查看官网 https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html

1.实例化:

a=LinearRegression()

参数默认:
fit_intercept=True, normalize=False, copy_X=True, n_jobs=None
fit_intercept:是否存在截距,默认存在
normalize:标准化开关,默认关闭
copy_X
n_jobs

2.方法:

#输入数据,输入x,y数据,其中参sample_weight数是指每条测试数据的权重,以array形式传入
fit(X, y[, sample_weight])    Fit linear model.
# get_params([deep]) Get parameters for this estimator. #模型预测
predict(X) Predict using the linear model #计算评分
score(X, y[, sample_weight]) Returns the coefficient of determination R^2 of the prediction.

Returns the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.


作用:返回该次预测的系数R2    


其中R=(1-u/v)。


u=((y_true - y_pred) ** 2).sum()     v=((y_true - y_true.mean()) ** 2).sum()

其中可能得到的最好的分数是1,并且可能是负值(因为模型可能会变得更加糟糕)。当一个模型不论输入何种特征值,其总是输出期望的y的时候,此时返回0。



set_params(**params) Set the parameters of this estimator.

3.回归系数与截距

#回归系数
coef_
#截距
intercept_
上一篇:自定义控件之 Combobox


下一篇:MariaDB 10.1配置