费用流好题,k重区间plus版本
https://www.luogu.com.cn/problem/P3357
从 \(k\) 重区间变成 \(k\) 重线段,仍旧只看 \(x\) 轴的重叠。
这样就多出来一个问题,对于平行于 \(x\) 轴的线段,还向上一题那样连边会变成自环,于是T了两个点。考虑拆点,每个点拆成 \(2n\) 和 \(2n+1\). 剩下的正常连就行了~
点击查看代码
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <sstream>
#include <vector>
typedef long long ll;
#define endl '\n'
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0)
#define P pair<int, int>
#define endl '\n'
using namespace std;
// #define int long long
const int maxn = 500 * 2 + 10;
const int inf = 0x3f3f3f3f;
int n1, n2, cnt_edge = 1, S, T;
int head[maxn];
int dis[maxn];
bool vis[maxn];
struct edge {
int to, nxt;
int flow, cost;
} e[(maxn * maxn) << 2];
inline void add(int u, int v, int w, int c) {
e[++cnt_edge].nxt = head[u];
head[u] = cnt_edge;
e[cnt_edge].to = v;
e[cnt_edge].flow = w;
e[cnt_edge].cost = c;
}
inline void addflow(int u, int v, int w, int c) {
add(u, v, w, c);
add(v, u, 0, -c);
}
inline bool spfa(int on) {
memset(vis, 0, sizeof(vis));
if (on == 1)
for (int i = 0; i <= T; i++) dis[i] = inf;
else
for (int i = 0; i <= T; i++) dis[i] = -inf;
queue<int> q;
q.push(S);
dis[S] = 0;
vis[S] = 1;
while (!q.empty()) {
int x = q.front();
q.pop();
vis[x] = 0;
for (int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
// cout << "->" << y << endl;
if ((on == 1 && e[i].flow && dis[y] > dis[x] + e[i].cost) ||
(on == -1 && e[i].flow && dis[y] < dis[x] + e[i].cost)) {
dis[y] = dis[x] + e[i].cost;
if (!vis[y]) q.push(y), vis[y] = 1;
}
}
}
if (on == 1)
return dis[T] != inf;
else
return dis[T] != -inf;
}
ll dfs(int x, ll lim) {
vis[x] = 1;
if (x == T || lim <= 0) return lim;
int res = lim;
for (int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if (dis[y] != dis[x] + e[i].cost || e[i].flow <= 0 || vis[y]) continue;
ll tmp = dfs(y, min(res, e[i].flow));
res -= tmp;
e[i].flow -= tmp;
e[i ^ 1].flow += tmp;
if (res <= 0) break;
}
return lim - res;
}
inline ll Dinic(int on) {
ll res = 0, cost = 0;
while (spfa(on)) {
ll flow = dfs(S, inf);
res += flow, cost += flow * dis[T];
}
return cost;
}
int nn, k;
int lx[maxn], rx[maxn], ly[maxn], ry[maxn], a[maxn << 1], len[maxn];
int cdis(int i) {
return int(sqrt(1ll * (lx[i] - rx[i]) * (lx[i] - rx[i]) +
1ll * (ly[i] - ry[i]) * (ly[i] - ry[i])));
}
signed main() {
// IOS;
cin >> nn >> k;
for (int i = 1; i <= nn; i++) {
cin >> lx[i] >> ly[i] >> rx[i] >> ry[i];
if (lx[i] > rx[i])
swap(lx[i], rx[i]), swap(ly[i], ry[i]);
len[i] = cdis(i);
lx[i] <<= 1, rx[i] <<= 1;
if (lx[i] == rx[i])
rx[i]++;
else lx[i]++;
a[i] = lx[i], a[i + nn] = rx[i];
}
sort(a + 1, a + nn * 2 + 1);
int n = unique(a + 1, 1 + a + nn * 2) - a - 1;
S = n + 1, T = S + 1;
for (int i = 1; i <= nn; i++) {
int L = lower_bound(a + 1, a + 1 + n, lx[i]) - a;
int R = lower_bound(a + 1, a + 1 + n, rx[i]) - a;
addflow(L, R, 1, len[i]);
}
for (int i = 1; i < n; i++) {
addflow(i, i + 1, inf, 0);
}
addflow(S, 1, k, 0);
addflow(n, T, k, 0);
// cout << "build c\n";
cout << Dinic(-1) << endl;
return 0;
}