洛谷P1447 [NOI2010] 能量采集
TITLE
思路
∑ i = 1 n ∑ j = 1 m 2 gcd ( i , j ) − 1 = − n ∗ m + 2 ∑ i = 1 n ∑ j = 1 m gcd ( i , j ) \sum_{i=1}^n\sum_{j=1}^m2\gcd(i,j)-1=-n*m+2\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j) ∑i=1n∑j=1m2gcd(i,j)−1=−n∗m+2∑i=1n∑j=1mgcd(i,j)
∵ ∑ k ∣ n ϕ ( k ) = n \because \sum_{k|n}\phi(k)=n ∵∑k∣nϕ(k)=n
∴ ∑ i = 1 n ∑ j = 1 m gcd ( i , j ) = ∑ i = 1 n ∑ j = 1 m ∑ k ∣ gcd ( i , j ) ϕ ( k ) = ∑ i = 1 n ∑ j = 1 m ∑ k ∣ i , k ∣ j ϕ ( k ) = ∑ k = 1 min ( n , m ) ( n / i ) ∗ ( m / j ) ∗ ϕ ( k ) \therefore\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)=\sum_{i=1}^n\sum_{j=1}^m\sum_{k|\gcd(i,j)}\phi(k)=\sum_{i=1}^n\sum_{j=1}^m\sum_{k|i,k|j}\phi(k)=\sum_{k=1}^{\min(n,m)}(n/i)*(m/j)*\phi(k) ∴∑i=1n∑j=1mgcd(i,j)=∑i=1n∑j=1m∑k∣gcd(i,j)ϕ(k)=∑i=1n∑j=1m∑k∣i,k∣jϕ(k)=∑k=1min(n,m)(n/i)∗(m/j)∗ϕ(k)
∴ ∑ i = 1 n ∑ j = 1 m 2 gcd ( i , j ) − 1 = − n ∗ m + 2 ∑ k = 1 min ( n , m ) ( n / i ) ∗ ( m / j ) ∗ ϕ ( k ) \therefore \sum_{i=1}^n\sum_{j=1}^m2\gcd(i,j)-1=-n*m+2\sum_{k=1}^{\min(n,m)}(n/i)*(m/j)*\phi(k) ∴∑i=1n∑j=1m2gcd(i,j)−1=−n∗m+2∑k=1min(n,m)(n/i)∗(m/j)∗ϕ(k)
线
性
求
ϕ
线性求\phi
线性求ϕ
欧
拉
筛
+
ϕ
性
质
欧拉筛+\phi性质
欧拉筛+ϕ性质
ϕ
性
质
:
\phi性质:
ϕ性质:
(x is a prime)
ϕ
(
x
)
=
x
−
1
\phi(x)=x-1
ϕ(x)=x−1
(
gcd
(
x
,
y
)
=
1
)
ϕ
(
x
∗
y
)
=
ϕ
(
x
)
∗
ϕ
(
y
)
(\gcd(x,y)=1)\phi(x*y)=\phi(x)*\phi(y)
(gcd(x,y)=1)ϕ(x∗y)=ϕ(x)∗ϕ(y)
(y is a prime,
y
∣
x
)
,
ϕ
(
x
∗
y
)
=
ϕ
(
x
)
∗
y
y|x),\phi(x*y)=\phi(x)*y
y∣x),ϕ(x∗y)=ϕ(x)∗y
CODE
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
class phiclass
{
private:
int *phiarray,*primearray,philen,primelen;
bool *lightarray;
public:
void init(int *phitmp,int *primetmp,bool *lighttmp,int x);
int phi(int x);
int prime(int x);
bool isprime(int x);
};
void phiclass::init(int *phitmp,int *primetmp,bool *lighttmp,int x)
{
int i,j;
phiarray=phitmp,primearray=primetmp,lightarray=lighttmp,philen=x,primelen=0;
memset(phiarray,0,sizeof(phiarray));
memset(primearray,0,sizeof(primearray));
memset(lightarray,0,sizeof(lightarray));
phiarray[1]=1,lightarray[0]=lightarray[1]=1;
for(i=2;i<=philen;i++)
{
if(!lightarray[i])primearray[++primelen]=i,phiarray[i]=i-1;
for(j=1;j<=primelen&&primearray[j]*i<=philen;j++)
{
lightarray[primearray[j]*i]=1;
if(i%primearray[j])phiarray[primearray[j]*i]=phiarray[i]*(primearray[j]-1);
else{phiarray[primearray[j]*i]=phiarray[i]*primearray[j];break;}
}
}
return;
}
int phiclass::phi(int x)
{
return phiarray[x];
}
int phiclass::prime(int x)
{
return primearray[x];
}
bool phiclass::isprime(int x)
{
return !lightarray[x];
}
int a[500010],b[500010];
bool c[500010];
int main()
{
long long n,m,mn,i,ans=0;
phiclass p;
for(scanf("%lld%lld",&n,&m),mn=min(n,m),p.init(a,b,c,mn),i=1;i<=mn;i++)ans+=p.phi(i)*(n/i)*(m/i);
printf("%lld",(ans<<1)-n*m);
return 0;
}